07_Berkane.indd UDC 595.78(65) ECOLOGICAL ANALYSIS OF BUTTERFLIES AND DAY-FLYING MOTHS DIVERSITY OF THE GOURAYA NATIONAL PARK (ALGERIA) S. Berkane1*, H. Hafi r2, R. Moulaï1 1Laboratoire de zoologie appliquée et d´écophysiologie animale, Faculté des sciences de la nature et de la vie, Université de Bejaia-06000 Bejaia, Algérie 2 Direction général des Forêts, Alger, Algérie E-mails: soniaberkane2000@hotmail.com, moulai741@hotmail.com *Corresponding author S. Berkane (https://orcid.org/0000-0003-0771-4797) Ecological Analysis of Butterfl ies and Day-Flying Moths Diversity of the Gouraya National Park (Algeria). Berkane, S., Hafi r, H., Moulaï, R. — Th is work represents an initial analysis of butterfl ies and day-fl ying moths of the Gouraya National Park (Algeria). Forty-eight fi eld-surveys were made between February 2011 and January 2012, in three stations (the cliff , the low matorral and the high matorral). It allowed us to identify 38 species, belonging to 6 families: Lycaenidae (13 species), Nymphalidae (10 spe- cies), Pieridae (9 species), Papilionidae (2 species), Hesperiidae (2 species), Zygaenidae (1 species) and Sphingidae (1 species). Th e low matorral and cliff were the richest stations, with 33 species for the fi rst one and 23 species for the latter. Only seven species were observed in the high matorral where the high- est centesimal frequency was recorded for the Pararge aegeria (47.83 %). Th is species records the highest frequency of occurrences in all 3 stations. Th e low matorral (H´ = 4.25 bits, E = 0.84) proved to be the most diversifi ed and balanced station. Key words: Gouraya National Park, butterfl y, day-fl ying moth, ecology, diversity. Introduction Inventories are more necessary than ever today in the face of the disappearance of entomofauna diversity (Ouin et al., 2000; Lafranchis, 1997). Butterfl ies are excellent bio-indicators of environmental quality. Indeed, their great diversity and varied ecological requirements make them a taxonomic group of choice for biodiversity monitoring in a wide range of terrestrial environments (Tarrier & Delacre, 2008; Manil et al., 2007; Pasquet, 2006). A recent systematic and ecological catalogue of butterfl ies were established for Algeria (Tennent, 1996). It was followed by an inventory of butterfl ies inhabiting the most interesting habitats in north-eastern Algeria, in particular wetlands (Samraoui, 1998). More recently work on the diversity and abundance of butterfl y spe- cies were directed at agricultural plots in central northern Algeria (Remini & Moulaï, 2015) or on the Belezma National Park in the Aurés region (Berkane et al., 2019). Within the coastal ecosystems of Kabylies-Numidia (Véla & Benhouhou, 2007), a particular sector: Gouraya National Park (GNP) is famous for its endemic plant species and associations, and has long attracted the attention of scientists (Pons & Quezel, 1955). Despite its protected status, the region´s social and tourist needs make it a highly coveted area. Th e most serious threats to this protected area, and therefore to the but- terfl y populations it shelters, consist of overcrowding (the infl ux of tourists and the lack of civic-mindedness) and the anthropogenic destruction of habitats (urbanization, clearing, quarries, etc.) (Rebbas, 2014). Zoodiversity, 55(2): 155–166, 2021 DOI DOI 10.15407/zoo2021.02.155 Entomology 156 S. Berkane, H. Hafi r, R. Moulaï Noting that to date no study has made it possible to identify the butterfl ies present in this protected area. Th e present work therefore focuses on an inventory of local populations of the butterfl ies and day-fl ying moths in order to assess their wealth, composition and ecology. Material and methods S t u d y a r e a a n d s i t e s . Th e GNP is located on the eastern coast of Algeria. It is part of the coastal ranges of the Tellian Atlas. With an area of 2080 ha, it occupies 10.2 % of the territory of the Wilaya of Bejaia. It is bounded on the North by the Mediterranean Sea, on the East side by the pointe noire to the Cap-Bouac, on the South by the city of Bejaïa and the road 24, and on the West by the village Issoumer up to Boulimat beach. In 2004, this park was classifi ed as biosphere reserve by the international coordinating council of the Man and Biosphere (MAB) program of UNESCO in Paris (Rebbas, 2002; Vela & Benhouhou, 2007; Boumecheikh, 2011; Moulaï & Mostefai, 2015) (fi g. 1). According to the Emberger system (1955) adapted by Daget (1977) with tem- peratures in degrees Celsius, Th e GNP is situated in a subhumid bioclimatic environment during warm winter (Q2 = 124). Th e weather station of Bejaia records on average 762 mm of rain per year. Th e average minimum temperature for the coldest month is 7.5 °C and the maximum temperature for the hottest month is 29.7 °C (Rebbas et al., 2011). Th ree stations were chosen within the GNP: a cliff , a low matorral and a high matorral. Th e cliff (36°46´12.21˝ N 5°06´04.17˝ E, altitude: 399 m) (fi g. 1 — Station A) is located in the North-East of the park, at Cape Carbon. It is bordered on the north by the Cape Carbon lighthouse zone, on the East and West by the Mediterranean Sea and it is crossed by a tourist track. Th is habitat is determined by the presence of compact calcareous rocks exposed to the North, forming abrupt and high vertical or slightly sloping coasts (85–95 % inclination). Th e vegetation covers 45 % of the station and the rock outcrops can be up to 55 %. Its vegetation does not exceed 1 to 1.5 meters. It consists mainly of: Quercus coccifera (L., 1753), Phillyrea latifolia ((L.) Maire (1934)), Bupleurum plantagineum (Desf., 1798) and Chamaerops humilis (L., 1753). Let us note the presence of a Euphorbia dendroides (L., 1753) formation, unique to the Mediterranean. Th e low matorral (36°46´03.90˝ N 5°04´08.14˝ E, altitude: 333 m) (fi g. 1 — Station B) is located in south-eastern art of the Park. It bordered on the North by Jebel Gouraya and on the South by the city of Bejaia. A tourist track crosses it on both sides. It is usually on fairly low slopes (24 %). Its general recovery does not exceed 60 % and it is characterized by the dominance of a shrub layer which can reach 1 to 2 meters high. Th e plant species that characterize it are: Quercus coccifera, Pistac ia lentiscus (L., 1753), Myrtus communis (L., 1753), Ceratonia siliqua (L., 1753) and Pinus halepensis (Mill., 1768). Th e high matorral (36°45´59.39˝ N 5°05´53.58˝ E, elevation: 399 m) (fi g. 1 — Station C) is located in the integral of the Park. It´s bounded by the tourist route that runs through the park. Th is habitat is generally found on medium-slope lands (35 %). Th e vegetation cover is greater than 89.44 %. It´s determined by a relatively high Fig. 1. Geographic location of Gouraya National Park and the study sites (Hafi r Halim). 157 Ecological Analysis of Butterfl ies and Day-Flying Moths Diversity of the Gouraya National Park (Algeria) shrub layer (4 m). Th e plant species that dominate are: Olea europaea (L., 1753), Ceratonia siliqua, Phillyrea latifolia and Pistacia lentiscus, with some feet of Pinus halepensis (Boubaker, 2012; Boumecheikh, 2011; Pons & Quezel, 1955). Th e method chosen for this inventory is that of linear transects resulting from a standardized protocol for the Lepidoptera “Butterfl ies Monitoring Scheme” inventory (Pellet & Gander, 2009; Lafranchis, 1997; Pollard & Yates, 1993; Pollard, 1977). A regular count at sight of individuals of all species encountered was made by the same observer at least once a week and per station. 500 m / station, over a width of 5 meters, was covered in 20 min. Most of the butterfl ies were caught with a net, determined in the fi eld, and released. Th ere were also defi nitive catches for identifi cation at the laboratory, whenever necessary. In situ photos were also taken. Th e determination of the species was made using the guides of Tennent (1996) and Tolman & Lewington (1999), as well as the work of Robineau (2007) and Hofmann (1979). Certain meteorological conditions must be re- spected: between 13 and 17 °C for a minimum sunshine of 60 % and without the constraint of sunshine beyond 17 °C except for the force of the wind never to exceed 40 km / h (Ouin et al., 2000; Carrière, 2013). In total, 48 trips per station were made between February 2011 and January 2012. E c o l o g i c a l i n d i c e s a n d s t a t i s t i c a l a n a l y s i s . Th e data collected were processed using the follow- ing indicators: Species richness (S), which is the total number of species present in a station; Average richness (Sm); which is the average number of species encountered during every counting event: Sm = ∑ Ni/R (Ni: number of species in survey i, R: total number of surveys) (Ramade, 1984). Centesimal Frequency (Relative Abundance) (%), Fc % = (ni/N) X 100, (Fc: Relative abundance of stand species; ni: Number of individuals of species i taken into consideration; N: Number of individuals of all species combined); Frequency of Occurrence (Constancy); the frequency of occurrence represents the ratio of the number of occurrences of a given species to the total number of records N. It is calculated by the following formula: Fo % = (Pi x 100)/N (Fo %: frequency of occurrence; Pi: number of surveys containing the species under study; N: total number of surveys carried out). Depending on the frequency of occurrence, the following categories are distinguished (Dajoz, 2006), species are: ubiquitous if Fo = 100 %, constant if 75 % ≤ Fo < 100 %, regular if 50 % ≤ Fo < 75 %, incidental if 25 % ≤ Fo < 50 %, accidental if 5 % ≤ Fo < 25 %, rare if Fo < 5 % (Dajoz, 1971; Faurie et al., 2003). Th e frequencies of occurrence of the stand or species are grouped into classes, which are determined according to the following Sturge rule: N = 1 + (3.3 log n) (N: Number of classes; n: number of species present) (Scherrer, 1984). S t r u c t u r a l E c o l o g i c a l I n d i c e s . Th e diversity indices depend on the specifi c richness of the stand and its structure and make it possible to evaluate the biodiversity of the stand. Shannon-Weaver Diversity Index (binary digit (bits)): Th e diversity index of Shannon-Weaver is considered the best way to translate diversity. Th is index is calculated using the following formula: H´ = -∑ (Ni / N) log2 Ni / N (Ni: number of individuals of a given species, i ranging from 1 to S (total number of species). N: total number of individuals. Piélou Fairness Index, Equitability (E): is a second fundamental dimension of diversity, it is the distribution of the number of individuals per species. It is the ratio between the maximum diversity (Hmax), it is expressed as follows: E = H´/ H´max. (E: Equitability Index; H´: Shannon-Weaver Diversity Index,; H´max: Maximum diversity). It is obtained by the following formula H´max = log 2(S), (S: Is the number of species forming the stand). Fairness makes it possible to compare the structures of insect stands (Ramade, 1984; Pielou, 1969). And fi nally, the Sö- rensen Index: Cs = 2J / a + b * 100 (a: number of species present in site A; b: number of species present in site B and J: number of common species at site A and B) (Magurran, 1988). An analysis of the correspondences (CA) is carried out with the version: 3.20 of Past soft ware. It will make it possible to associate certain species with certain stations. Results Th irty-eight butterfl y species are observed during an annual cycle (February 2011–Jan- uary 2012) in the GNP. Rhopalocera are the most diversifi ed with 36 species; 34 recorded during the inventory period and 2 (2 individuals for Charaxes jasius and 5 individuals for Melanargia ines) were found during subsequent outings, or 31.67 % of the Algerian rho- palfauna (120 species according to Tennent (1996)). For further ecological and statistical studies, two species (Charaxes jasius and Melanargia ines) will not be taken into account. Th e Rhopalocera are represented by 5 families: Papilionidae, Pieridae, Lycaenidae, Nym- phalidae and Hesperiidae. Th e Lycaenidae was the richest with 13 species. It is followed by the Nymphalidae and the Pieridae with 10 and 9 species respectively. On the other hand, Papilionidae and Hesperidae, are represented by 2 species for each. Day Heterocera is rep- resented by 2 families, the Zygaenidae and the Sphingidae, with only one species for each. Six of the species listed in the park have the status of protected species in Algeria, namely: Iphiclides feisthamelii, Papilio machaon, Colias croceus, Gonepteryx rhamni, Vanessa ata- lanta and Polyommatus icarus. 158 S. Berkane, H. Hafi r, R. Moulaï Th e highest centesimal frequency was recorded at the high matorral by Pararge aegeria with an abundance of 47.83 %. In the cliff , the most abundant species are those of Colotis evagore (19.23 %), the Pieris rapae (17.79 %) and the Gonepteryx cleopatra (10.58 %). And in the low matorral, Anthocharis belia (12.87 %), Pieris brassicae (10.38 %) and Callophrys rubi (10.15 %). Th e frequency of occurrence for each species and for each station shows that Pararge aegeria recorded the highest frequencies for the three stations. Firstly, like a regular, with 50 % for the low matorral, and secondly like incidental specie, with 45.83 % for the cliff and 37.5 % for the high matorral (table 1). T a b l e 1 . Average number, centesimal frequencies (Fc, %) and frequency of occurrences (Fo, %), calculated for the species of butterfl ies of the Gouraya National Park at the three stations, species in bold type: protected species in Algeria  Species  Code Cliff Low matorral High matorral ni Fc, % Fo, % ni Fc, % Fo, % ni Fc, % Fo, % Anthocharis belia (Linnaeus, 1767) Abe 15 7.21 25 Inc 57 12.87 35.42 Inc 2 4.35 6.25 Acc Aricia agestis (Denis et Schiff ermüller, 1775) Aag 0 0 0 3 0.68 8.33 Acc 0 0 0 Borbo borbonica (Boisduval, 1833) Bbo 0 0 0 1 0.23 6.25 Acc 0 0 0 Callophrys rubi (Linnaeus, 1758) Cru 0 0 0 45 10.15 33.33 Inc 0 0 0 Celastrina argiolus (Linnaeus, 1758) Car 0 0 0 2 0.45 4.16 Rar 0 0 0 Charaxes jasius (Linnaeus, 1767) Cja 0 0 0 2 – – 0 0 0 Coenonympha arcanioides (Pierret, 1837) Car 0 0 0 4 0.9 16.66 Acc 0 0 0 Colias croceus (Geoff roy in Fourcroy, 1785) Ccr 3 1.44 25 Inc 7 1.58 16.66 Acc 4 8.7 6.25 Acc Colotis evagore (Klug, 1829) Cev 40 19.23 35.42 Inc 3 0.68 8.33 Acc 0 0 0 Cynthia cardui (Linnaeus, 1758) Cca 6 0.96 6.25 Acc 17 1.81 33.33 Inc 0 0 0 Danaus chrysippus (Linnaeus, 1758) Dch 1 0.48 8.33 Acc 0 0 0 0 0 0 Euchloe crameri (Butler, 1869) Ecr 1 0.48 8.33 Acc 0 0 0 0 0 0 Gonepteryx cleopatra (Linnaeus, 1767) Gcl 22 10.58 41.66 Inc 33 7.45 50 Reg 0 0 0 Gonepteryx rhamni (Linnaeus, 1758) Grh 13 6.25 41.66 Inc 9 2.03 33.33 Inc 2 4.35 6.25 Acc Iphiclides feisthamelii (Duponchel, 1832) Ife 5 2.4 29.17 Inc 7 1.58 31.25 Inc 0 0 0 Lampides boeticus (Linnaeus, 1767) Lbo 2 0.96 6.25 Acc 11 2.48 16.66 Acc 0 0 0 Lasiommata megera (Linnaeus, 1767) Lme 3 1.44 16.66 Acc 6 1.35 16.66 Acc 0 0 0 Leptotes pirithous (Linnaeus, 1767) Lpi 7 3.37 25 Inc 32 7.22 35.42 Inc 6 13.04 8.33 Acc Lycaena phlaeas (Linnaeus, 1761) Lph 4 1.92 8.33 Acc 9 2.03 31.25 Inc 0 0 0 Macroglossum stellatarum (Linnaeus, 1758) Mst 3 1.44 14.58 Acc 19 4.29 33.33 Inc 0 0 0 Melanargia ines  (Hoff mannsegg, 1804)  Min 0 0 0 5 - - 0 0 0 Papilio machaon (Linnaeus, 1758) Pma 6 2.88 16.66 Acc 3 0.68 16.66 Acc 0 0 0 Pararge aegeria (Linnaeus, 1758) Pae 14 6.73 45.83 Inc 20 4.51 50 Reg 22 47.83 37.5 Inc 159 Ecological Analysis of Butterfl ies and Day-Flying Moths Diversity of the Gouraya National Park (Algeria) Th e richest station is the low matorral, with 32 species followed by the cliff with 23 spe- cies and lastly, the high matorral, with 7 species. Th e average species richness, expressed as the average number of species per survey, is highest in the low matorral area, with 7.54 spe- cies. It is followed by the cliff , with 4.5 species and 0.85 species for the high matorral. Th e low matorral (H´: 4.25 bits, E: 0.84) is the most diversifi ed and the most balanced station in front of the cliff (H´: 3.74 bits, E: 0.83) and the high matorral (H´: 2.29 bits, E: 0.81) (table 2). Th e application of the Sörensen similarity coeffi cient between the three stations shows that the highest similarity is noted between the cliff and the low matorral with a value of 70 %. It is followed by the one that gathers the cliff and the high matorral with a coeffi cient of 34 %. Th e lowest value is noted between low matorral and high matorral with 26 %. Th e study of the evolution of the species richness of butterfl ies and day-fl ying moths in the three stations in the GNP, during an annual cycle, shows two peaks of appearance in two of the study stations: the low matorral and the cliff . Th e fi rst one takes place in spring between April and June then the second one which is smaller, in autumn, between Septem- Pieris brassicae (Linnaeus, 1758) Pbr 3 1.44 22.92 Acc 46 10.38 41.66 Inc 0 0 0 Pieris rapae (Linnaeus, 1758) Pra 37 17.79 25 Inc 40 9.03 43.75 Inc 6 13.04 14.58 Acc Plebejus allardi (Oberthür, 1874) Pal 0 0 0 6 1.35 22.92 Acc 0 0 0 Polygonia c-album (Linnaeus, 1758) Pca 0 0 0 0 0 0 4 8.7 6.25 Acc Polyommatus bellargus (Rothenburg, 1775) Pbe 0 0 0 5 1.13 8.33 Acc 0 0 0 Polyommatus icarus (Rottemburg, 1775) Pic 0 0 0 4 0.9 25 Inc 0 0 0 Pontia daplidice (Linnaeus, 1908) Pda 0 0 0 1 0.23 8.33 Acc 0 0 0 Pyronia bathseba (Fabricius, 1793) Pba 0 0 0 1 0.23 8.33 Acc 0 0 0 Satyrium esculi (Hübner, 1804) Ses 0 0 0 2 0.45 8.33 Acc 0 0 0 Satyrium ilicis (Esper, 1779) Sil 3 1.44 8.33 Acc 0 0 0 0 0 0 Th ymelicus acteon (Rottemburg, 1775) Tac 2 0.96 8.33 Acc 10 2.26 8.33 Acc 0 0 0 Tomares ballus (Fabricius, 1787) Tba 0 0 0 7 1.58 16.66 Acc 0 0 0 Tomares mauretanicus (Lucas, 1849) Tma 0 0 0 1 0.23 6.25 Acc 0 0 0 Vanessa atalanta (Linnaeus, 1758) Vat 2 2.88 14.58 Acc 8 3.84 33.33 Inc 0 0 0 Zygaena algira fl orae (Slaby, 1974) Zal 16 7.69 16.66 Acc 24 5.42 33.33 Inc 0 0 0 N o t e . ni — number of individuals, code — code species, Rar; rare, Acc; accidental species, Inc; incidental species, Reg; regular. T a b l e 2 . Ecological indices and structural indices calculated for the three stations of the Gouraya National Park Ecological Indices Station Cliff Low matorral High matorral Species richness (S) 23 32 7 Average richness (Sm) 4.5 7.54 0.85 Diversity Index (H´, bits) 3.74 4.25 2.29 Diversity Index (H´, bits) 4.52 5.04 2.81 Equitability Index (E) 0.83 0.84 0.81 160 S. Berkane, H. Hafi r, R. Moulaï ber and November. However, there is, in the low matorral an absence of butterfl ies from July to August. As for the high matorral, it records a certain stability of its species richness throughout the year, with no observations, between September and December (fi g. 2). Th e projection plane defi ned by axes 1 and 2 (Axis 1: 53.16  % and Axis 2: 44.84  %) divides the GNP butterfl y and day-fl ying moth population into two sets (A and B) with two groups for set A (G1 and G3) and only one for set B (G2). Group (G1), low matorral located on the posi tive side of both axes, encompasses the ma- jority of species among which Callophrys rubi, Polyommatus bellargus, Poly ommatus icarus, Coenonympha arcanioides, Tomares ballus, Plebeius allardi, Aricia agestis, Celastrina argiolus, Borbo borbonica, Pontia daplidice, Pyronia bathseba, Tomares mauretanicus, Satyrium esculi, Pieris brassicae, Macroglossum stellatarum, Lampides boeticus, Th ymelicus acteon, Anthocharis belia, Vanessa atalanta, Cynthia cardui, Leptotes pirithous, Lycaena phlaeas, Lasiommata megera, Zygaena algira fl orae, Gonepteryx cleopatra, Iphiclides feisthamelii and Pieris rapae. Fig. 2. Evolution of the species richness of butterfl ies and day-fl ying moths at the three stations of Gouraya National Park, mean temperature in Bejaia (DAAE, 2012). Fig. 3. Projection of the butterfl y and day-fl ying moth species of the three stations studied on the fi rst two axes of the correspondence factor analysis. 161 Ecological Analysis of Butterfl ies and Day-Flying Moths Diversity of the Gouraya National Park (Algeria) Group (G2), high matorral located on the negative side of axis 1 and on the positive side of axis 2, is represented by few species such as Polygonia c-album, Pararge aegeria and Colias croceus. Group (G3), the cliff is on the negative side of both axes and index species such as Satyrium ilicis, Danaus chrysippus, Euchloe crameri, Colotis evagore, Papilio machaon and Gonepteryx rhamni (fi g. 3). Discussion GNP´s butterfl y and day-fl ying moth monitoring between February 2011 and January 2012, in the three stations enabled us to count 697 individuals, representing 38 species, or nearly 31.67 % of the species present in Algeria; 120 species, according to Tennent (1996). Th is inventory shows that there is a majority of Rhopalocera because only a certain species of heterocera fl y by day (Chinery, 1988). Butterfl y groups, which use the widest range of host plants, are richer in species (Weincatner et al., 2006). Th ese are Lycaenidae, which feed on several families of herbaceous plants (Fabaceae, Lamiaceae, Polygonaceae and Leguminaceae), as well as certain species of trees and shrubs. Pieridae also have a large number of species, which feed on Fabaceae, Brassiceae, Rosaceae, Rhamnaceae, Residaceae and Tropaeloceae (Tennent, 1996; Chinery & Cuisin, 1994). It is for the Pararge aegeria that the highest centesimal frequency was recorded in the area of high matorral (Speckled Wood). Th is species oft en prefers woods and especially the ones which are located on the edge (Tolman & Lewington, 1999; Davies, 1978). In some cases, the rarity or location of a species may match that of its host plant (Tolman & Lewing- ton, 1999). For the cliff for example, the most abundant species are Colotis evagore (small orange tip) because it is where its host plant Capparis spinosa (L., 1753) is the most wide- spread (Rebbas, 2014). Th en Pieris rapae (Green-veined White) comes. It is polyphagous on a very large number of plants from diff erent families such as Brassicaceae, Cappara- ceae, Ericaceae, Fabaceae and Residaceae. It is followed by Gonepteryx cleopatra (Cleopatra butterfl y) which a Mediterranean holomed species, dependent on Rhamnus alaternus (L., 1753), Rh. catharticu s (L., 1753), Rh. lycioides (L., 1763) and Rh. myrtifolia (Willk, 1852) (Tarrier & Delacre, 2008). Rha mnus lycioides, was found at the cliff (Rebbas et al., 2011). Fi- nally, the most important frequencies recorded in the low matorral are those of Anthocharis belia (Moroccan orange tip), a Mediterranean endemic species, which was brought back to Northwest Africa. It lives on meadows and rough ground rich in fl owers, oft en located in or next to forests. Th e females leave their eggs on various species of Biscutella (Van Swaay et al., 2015; Tarrier & Delacre, 2008). Pieris brassicae (Large White) which frequents various habitats rich in its host plants, as: Asteraceae, Brassiceae and Capparaceae. Also, for Cal- lophrys rubi (Green Hairstreak), which fi nds several of its host plants in this environment. We cite: Fabaceae, Rosaceae and Ericaceae (Tolman & Lewington, 1999; Tennent, 1996). Pararge aegeria is the most consistent species in all three stations. Th is butterfl y is not infl uenced by local and regional environmental changes. It has three generations and can be observed at any time from April to the end of September. It occurs in agricultural envi- ronments, where it lives among hedgerows and near groves (Manil et al., 2008; Schweiger et al., 2006; Dover et al., 2000). Low matorral has proven to be the richest station in butterfl y species, probably because this station is characterized by the presence of fl owering plants (Saidi, 2013) such as Cistus monspeliensis (L., 1753) and C. salvi ifolius (L., 1753). Th en there is in second position the cliff which is also rich in nectariferous plants such as Euphorbia dendroides, Bupleurum plantagineum and Phillyrea latifolia. Th e presence of fl owering plants is decisive for the concentration of adult butterfl ies (Manil & Chague, 2014). Finally, the least rich environ- ment, in terms of number of butterfl y species, is the high matorral. Th is result is probably due to the recovery of this station, which is greater than 89.44% (Rebbas et al., 2011). Th is 162 S. Berkane, H. Hafi r, R. Moulaï makes it less appreciated by butterfl ies, which are heliophilic and thermophilic insects that frequent open spaces by preference (Faure, 2007; Pasquet, 2006). Let us point out that these last two resorts are over-frequented by tourists. Even though the high matorral is part of the integral zone of the park, its closeness to a picnic area and a playground makes it busy zone (Rebbas, 2014; Mermouri & Goudjil, 2014; P.N.G., 2007). Today we know that the specifi c diversity of stations is conditioned by two factors, en- vironmental stability and climatic factors (Dajoz, 2006). Shannon´s Diversity Index reveals that the low matorral station is the most diverse. Th e climate of this station is more favour- able to day butterfl ies, compared to that of the cliff , which is exposed to marine winds, and that of the high matorral, which is forest (Boubaker, 2012; DAAE, 2012; Rebbas et al., 2011). Th is resort is also less prone to damage caused by tourists, who prefer the eastern part of the park (Mermouri & Goudjil, 2014; Rebbas, 2014). Low matorral is the result of the degradation of a Mediterranean forest (Meddour-Sahar & Derridj, 2010). It is now rec- ognized that some degraded environments represent formations of major biological value for biodiversity. Indeed, degraded environments resulting from forest environments of- fer a renewal to plants, by leaving place to more fl owering species (Benyahia & Tadjine, 2017; Véla et al., 1998). Th e low matorral is also the most balanced station, followed by the cliff . Th ese two stations off er more, in terms of heterogeneity of the environment. More, in terms of the heterogeneity of the habitat diversity, in this case; open spaces for fl ying and foraging, then shelter in the bushy and rocky parts with shrubs and trees. Whereas, the high matorral represents a pre-forest environment favourable to forest and nocturnal species (Lack & Lack, 1951), but off ering on the other hand, little sunny space for daytime species except on the edge and around the two feet of Pinus halepensis. Th e Sörensen Similarity Index, applied to the three NGP (National Gouraya Park) sta- tions, shows that the cliff and the low matorral have fairly close communities of butterfl y species. Th ese results can be explained by the fact that these two open stations off er but- terfl ies similar conditions (direct sunlight and fl owering) (Saidi, 2013; Moussouni, 2008). Butterfl ies are not randomly distributed in time and space. Each species has a par- ticular fl ight period and habitat (Chinery & Cuisin, 1994). Depending on climate, some rhopaloceran species can record one to several generations per year (Tolman & Lewing- ton, 1999). Th us, we could observe up to three peaks of appearance of the imagos at two of the three stations. Th e absence of butterfl ies in the low matorral from July to August is certainly due to the high heat of this season, because butterfl ies do not support direct sun- light (DAAE, 2012; Tarrier, 2001). Th e high matorral recorded some stability in its specifi c wealth for most months. Since rhopalocera and zygen are heliophilic, forests appear to be generally poor environments (Bachelard, 2012). It should also be noted that from Septem- ber to December, there are no butterfl ies in this station because the most butterfl y species do not survive low temperatures and lack of food, or they hide to overwinter (Leraut, 2012; Chinery & Cuisin, 1994; Bonnemaison, 1978). As far as specifi c richness for butterfl ies is concerned, the analysis of the correspon- dences (CA) carried out for the three stations allows us to associate certain species to cer- tain environments. G roup (G1), which represents low matorral, includes most species. Th e presence of Cal- lophrys rubi (Green hairstreak), Polyommatus bellargus (Adonis blue) and Polyommatus ica- rus (Common blue) in the low matorral is probably due to the presence of their host plants. Th e latter are represented by various Fabaceae, including Ca ragana sp., Hedysarum sp., Vi- cia cracca (L., 1753), Cytisus sp. and Genista sp. (Tennent, 1996). Coenonympha arcanioides (Moroccan pearly heath) is endemic to North Africa; Algeria, Morocco and Tunisia. It is the ultimate butterfl y of the Mediterranean matorral. It fl ies in cocciferous margins and clear pineraies (Tarrier & Delacre, 2008). Satyrium esculi (False ilex hairstreak) is a butterfl y that frequents the garrigue (Schmitt, 2003). Tomares ballus (Provence Hairstreak) fl ies over scru- bland and in hot biotopes. Its hosts are mainly Medicago (Chazel & Chazel, 2012; Chinery 163 Ecological Analysis of Butterfl ies and Day-Flying Moths Diversity of the Gouraya National Park (Algeria) & Cuisin, 1994; Tennent, 1996). Th e hosts of Tomares mauretanicus (Moroccan hairstreak) are represented by Fabaceae (Tennent, 1996) which are abundant in the low matorral. De Prins et al. (1992) demonstrated that Plebejus allardi (Allard´s blue) is present in Algeria and is not form of Plebejus martini (Martin´s blue), but that these are indeed two diff er- ent species. Th eir host plant Astragalus caprinus is abundant in the low matorral. Noting also that Borbo borbonica (Zeller´s skipper) is a species present in North Africa (Obregón et al., 2016). Aricia agestis (Brown argus) frequents dry or humid fl owering herbs has the host plants; Hel ianthemum sp., Erodium sp., Geranium sp. and Geranium sp. (Chinery & Cuisin, 1994; Tennent, 1996). Th e hosts of Celastrina argiolus (Holly blue) are Rosaceae, Fabaceae and Ranunculaceae (Tolman & Lewington, 1999); these families are present in this environ- ment (Rebbas, 2011). Pyronia bathseba (Spanish gatekeeper) fl ies over scrubland, especially in Quercus coccifera. We also found: Pieris brassicae (Large white), which frequents various habitats (Tolman & Lewington, 1999; Tennent, 1996). Lampides boeticus (Long-tailed blue) has a variety of habitats in northwest of Africa; such as sunny wastelands, crops and city beds and the Fabaceae represent most of its host plants (Chinery, 2005; Tennent, 1996). Leptotes pirithous (Lang´s short-tailed blue) live also in various habitats, including dry wastelands and crops and it also has many hosts, including Fabaceae, Luthraceae, Plumbaginaceae, Rosaceae and Ericaceae (Tolman & Lewington, 1999; Tennent, 1996). Th ymelicus acteon (Lullworth skipper) has a lot of varied habitats including scrublands. Anthocharis belia (Moroccan or- ange tip), is a common butterfl y in Algeria (Tennent, 1996). We also fi nd: Lycaena phlaeas (Small copper), which was observed in the area of the low matorral and the cliff (Tolman & Lewington, 1999). Th e hosts of Celastrina argiolus (Holly blue) are Rosaceae, Fabaceae and Ranunculaceae (Tolman & Lewington, 1999). Many rhopaloceran species are migratory to varying degrees. Th ey may be highly migratory within regions or local migrants, which travel on short distances. Depending on the species, these movements can range from a few dozen meters to a few hundred kilometers (Faure, 2007). Th is is the case of Vanessa atalanta (Red admiral) present in our inventory. Th is species is dependent on hosts such as Urt ica urens (L., 1753) and Parietaria sp. (Tennent, 1996). Noting that Urtica urens is present at the low matorral. Cynthia cardui (Painted lady), which is also a migratory species, lives and breeds in North Africa (Sterry & Mackay, 2004). It is polyphagous on a wide range of plants (Tarrier & Delacre, 2008). Its strong presence in our stations is due to the fact that this species is depen- dent on its host plant: Gal actites tomentosa (L., 1753) (Tolman & Lewington, 1999). Pontia daplidice (Bath white) which is an Atlanto-Mediterranean butterfl y with a migratory reputa- tion is fond of wastelands and meadows. Lasiommata megera (Wall brown) fl ies over open environments and sunny resorts in North Africa (Chazel & Chazel, 2012; Tennent, 1996). Gonepteryx cleopatra (Cleopatra butterfl y) has same habitat as Gonepteryx rhamni (Com- mon brimstone), but it was found in greater numbers in this station. Iphiclides feisthamelii (Southern scarce swallowtail), is an Atlanto-Mediterranean butterfl y. It is polyphagous on Rosaceae and everywhere on Hawthorn (Tarrier & Delacre, 2008). Pieris rapae (Small White) is a ubiquitous species. Finally, the only two heteroceres that were identifi ed in this inven- tory at the low matorral and the cliff are Zygaena algira fl orae and Macroglossum stellata- rum (Humming-bird hawk-moth). Th e fi rst one, which belongs to Zygaenidae, is present in Northern Algeria (Bejaia). How much even Zygaenidae are heterocerans but are day-active lepidopterans (Slaby, 1974; Hofmann, 1979). Th e latter species feed on the host plants, which belong to Rubiaceae (Tarrier & Delacre, 2008; Tennent, 1996; Still et al., 1996), and present in this environment (Rebbas, 2011). In group (G2), which represents the high matorral, there is no surprise for the pres- ence of Pararge aegeria (Speckled wood) and Polygonia c-album (Comma). Th ey are among the rare rhopalocerans, characteristic and observable in the forest (Bachelard, 2012; Tarrier & Delacre, 2008). Nor for, Colias croceus (Clouded yellow), which is a migratory butterfl y (Manil & Chague, 2014). Th e latter was counted in the three stations, with almost the same number. 164 S. Berkane, H. Hafi r, R. Moulaï Finally, group (G3); in the cliff zone there is the presence of Satyrium ilicis (Ilex hair- streak) which is generally found in oakwoods noting that at the cliff level, Quercus coccifera, one of its host plants (Villemant & Fraval, 1991) is abundant. Danaus chrysippus (Plain tiger) is a migratory butterfl y, which can be observed in cultivated areas and gardens near the coast, where its food plants are found. Euchloe crameri (Western dappled white) which an Atlanto-Mediterranean butterfl y, presents in the Maghreb can be found from Morocco to Libya. Th e host plants of its caterpillar are Brassicaceae, present in the cliff (Tarrier & Delacre, 2008). Colotis evagore (Small orange tip) is also a migratory species. We note the presence of Capparis spinosa, its host plant at cliff level. Th e cliff sampled for this work, meets all the conditions to welcome Papilio machaon (Swallowtail). It lives in North Africa and migrates at short distances (Tennent, 1996). Finally, Gonepteryx rhamni is fond of open brush; oft en rocky areas as is the case for the cliff . Conclusion Th e monitoring of the Gouraya National Park´s butterfl ies and moths, between Febru- ary 2011 and January 2012, allowed us to count 697 individuals, representing 38 species. Pararge aegeria is the most constant and abundant species in the three stations, the other being: Colotis evagore, Pieris rapae, Gonepteryx cleopatra, Anthocharis belia, Pieris brassicae and Callophrys rubi. Th e three prospected environments are really exposed to anthropic hazards (Rebbas, 2014). Nevertheless, the adverse eff ects remain moderate. It does not alter the GNP´s attractiveness towards butterfl y species. Th e low matorral proved to be the rich- est and the most diversifi ed station in species. Th is open environment is richer in nectar- bearing plants and it is also the least exposed environment to anthropogenic disturbances, with good recovery aft er fi res (Benyahia & Tadjine, 2017). Th is work presents itself as an initial state of the GNP´s butterfl y biodiversity. Th is list is far from exhaustive, but it nevertheless provides an overview of the lepidopteran fauna present in this protected area. To complete this list, it is necessary that monitoring over a longer period and over a wider set of environments be included in the park management plan (Mahmoudi, 2000). For rare species, such as Zygaena algira fl orae, a population study may be considered to determine appropriate management for their conservation. Finally, in addition to this scientifi c interest, there is the need to make the general pub- lic aware of the value of such a natural heritage. We would like to thank for their help the following institutions; the Gouraya National Park (Bejaia) and General Direction of Scientifi c Research and Technological development (DGRSDT), Ministry of Higher Education (Algeria). We also want to express our gratitude to Mr. Kerris, Director of the Gouraya National Park, for permits and hospitality, as well as his entire team, in particular Mr. Dri es Fatsah, Ms. Nabila Bourad. We also express our heartfelt thanks to the Gouraya forest guards for their support. And last, but not least I warmly thank Mr. Moustafa Berkane for his linguistic help. References Bachelard, P. 2012. Inventaire des rhopalocères et zygènes de l´espace naturel sensible de la vallée du Fossat. Société d´histoire naturelle Alcide-d´Orbigny, 1–23.   Benyahia, A., Tadjine, H. 2017. Analyse de la recolonisation après incendie par le pin d´Alep (Pinus halepensis Mill) au Parc Nationale de Gouraya. Mémoire de Master, Université de Bejaia, Algérie, 1–55. Berkane, S., Rahmani, A., Arifi , B., Moulaï, R., 2019. Diversity and ecology of diurnal Lepidoptera in Belezma National Park (Aurès, Algeria). Zoology and Ecology, 29 (2), 143–151. https://doi. org/10.35513/21658005.2019.2.11 Bonnemaison, L. 1978. Actions de l´obscurité et de la lumière sur l´induction de la diapause chez trois espèces de Lépidoptères. Zeitschrift für Angewandte Entomologie, 86 (1–4), 178–204. https://doi. org/10.1111/j.1439-0418.1978.tb01926.x Boubaker, Z. 2012. Cartographie et prédiction de la répartition de l´avifaune nicheuse du Parc National de Gouraya (Wilaya de Béjaia) : Géostatistique et analyse spatiale. Th èse de Doctorat, Ecole nationale supérieure agronomique, El Harrach, Alger, 1–220. 165 Ecological Analysis of Butterfl ies and Day-Flying Moths Diversity of the Gouraya National Park (Algeria) Boumecheikh, S. 2011. Analyse et cartographie du paysage dans le parc National de Gouraya (Wilaya de Béjaia). Mémoire d´ingénieur agronome, Institut nationale agronomique, El-Harrach, Algérie, 1–56. Carriere, M. 2013. Les papillons par la photo. Livre électronique (pdf). Ed. Les-Snats, collection Pense-bêtes, France, 1–120. Chazel, M., Chazel, L. 2012. Découverte naturaliste des garrigues. Ed. Quae, Guides pratiques, France, 1–208. Chinery, M. 1988. Insectes d´Europe occidentale. Ed. Arthaud, Espagne, 1–307. Chinery, M., Cuisin, D. 1994. Les papillons d´Europe (Rhopalocères et Hétérocères diurnes). Ed. Delachaux et Niestlé, Paris, 1–321. DAAE, Station Météorologique : 604020 (DAAE), Aéroport de Bejaia. 2012. Daget, P. 1977. Le bioclimat méditerranéen : analyse des formes climatiques par le système d´Emberger. Vegetatio, 34 (2), 87–103. https://doi.org/10.1007/BF00054477 Dajoz, R. 2006. Précis d´écologie. Ed. Dunod, Paris, 1–640. Davies, N. B. 1978. Territorial defense in the speckled wood butterfl y, Pararge aegeria: the resident always wins. Animal Behaviour, 26 (1), 138–147. https://doi.org/10.1016/0003-3472(78)90013-1 De Prins, W., Van, D. P., Balint, Z. 1992. Taxonomie revision of the North African species of the genus Plebejus Kluk, 1802 (Lepidoptera: Lycaenidae). Phegea, 20 (1), 11–34. http://biostor.org/reference/184188 Dover, J., Sparks, T., Clarke, S., Gobbett, K., Glossop, S. 2000. Linear features and butterfl ies: the importance of green lanes. Agriculture, Ecosystems and Environment, 80 (3), 227–242. https://doi.org/10.1016/S0167-8809(00)00149-3 Emberger, L. 1955. Une classifi cation biogéographique des climats. Recueil des travaux des laboratoires de botanique, géologie et zoologie de la faculté des sciences, Université de Montpellier, 7 (11), 3–43. Faure, E. 2007. Suivie de milieux ouverts dans le parc naturel régional du luberon par des papillons de jour (rhopalocères) bioindicateurs. Courrier scientifi que du Parc naturel régional du Luberon et de la Réserve de biosphère Luberon-Lure, France, 8, 86–101. http://hdl.handle.net/2042/58107 Hofmann, A. 1979. Zygaena (Agrumenia) algira Boisduval in Nordafrika mit Beschreibung einer neuen Unterart (Lep., Zygaenidae). Atalanta, 10 (4), 381–396. Lack, D., Lack, E. 1951. Migration of Insects and Birds through a Pyrenean Pass. Journal of Animal Ecology, 20 (1), 63–67. http://www.jstor.org/stable/1644 Lafranchis, T. 1997. L´étude de population : une méthode simple et ses applications. Insectes, 106 (3), 23–26. Leraut, P. 2012. Où les papillons passent-ils l´hiver ? 100 clés pour comprendre les papillons. Ed. Quæ, Versailles, 1–144. Magurran, A. E. 1988. Ecological Diversity and its Measurement. Ed. Springer Netherlands, New Jersey, 1–179. Manil, L., Chague, J. 2014. Gestion diff érenciée des parcelles de luzerne. Un impact positif sur les papillons de jour (Lepidoptera : Rhopalocera). Revue d´écologie-la Terre et la Vie, 69 (2), 101–111. http://hdl.handle. net/2042/55990 Manil, L., Henry, P.-Y., Lerch, A., Edelist, C., Ancrenaz, K., Gaboly, M., Fontaine, B., Lorrilliere, R., Julliard, R. 2007. Suivi Temporel des Rhopalocères de France Bilan 2006–2007. Département écologie et gestion de la biodiversité du muséum national d´histoire naturelle, Association des Lépidoptéristes de France, Paris, 1–28. Manil, L., Lerch, A., Julliard, R. 2008. Phénologie et répartition par types d´habitats des Rhopalocères d´Île-de- France (Lepidoptera : Rhopalocera) Exploitation des données du STERF (2005–2008). Lépidoptères, 17 (41), 95–109. Meddour-Sahar, O., Derridj, A. 2010. Le risque incendie de forêt : évaluation et cartographie. Le cas de la wilaya de Tizi Ouzou, Algérie (période 1986–2005). Sécheresse, 21 (3), 187–195. http://geoprodig.cnrs.fr/items/ show/3229 Mermouri, K., Goudjil, S. 2014. La Mise en valeur et l´intégration du patrimoine naturel du parc national de gouraya à la ville de Bejaia. Mémoire de Master, Université de Bejaia, Algérie, 1–83. Moulaï, R. 2006. Bio-écologie de l´avifaune terrestre et marine du Parc National de Gouraya (Béjaia), cas particulier du Goéland leucophée, Larus michahellis (Naumann, 1840). Th èse de doctorat, Institut national d´agronomie, El Harrach, Alger, 1–147. Moulaï, R., Mostefai, N. 2015. Etude écologique des oiseaux du Parc national de Gouraya (Bejaia-Algérie). Bureau d´Etudes Techniques Environnement–Ecologie–Ecosystèmes, Tlemcen, Algérie, 1–78. Moussouni, A. 2008. Identifi cation, évaluation et cartographie des habitats naturels du Parc National de Gouraya (Wilaya Béjaia). Mémoire d´ingénieur agronome, Institut nationale agronomique, El-Harrach, Algérie, 1–77. Obregón, R., Fernández, Haeger, J., López-Tirado, J., Manuel Moreno-Benítez, J., Jordano, D. 2016. Updating distribution of Borbo borbonica (Boisduval, 1833) in southern Iberian Peninsula (Lepidoptera, Hesperi- idae): potential and future distribution models. North-Western Journal of Zoology, 11 (2), 205–212.http:// biozoojournals.ro/nwjz/index.html Ouin, A., Paillisson, J-M., Lhonore, J. 2000. Méthodes de suivi et d´évaluation des populations et peuplements de papillons de jour. Insectes, 117 (2), 29–31. Pasquet, G. 2006. Le petit gibier (conservation des espèces, aménagement des milieux). Ed. Gerfaut, Barcelone, 1–318. Pellet, J., Gander, A. 2009. Comparaison de méthodes pour l´estimation de l´abondance des populations de papillons de jour : établissement d´un protocole de suivi du Grand Nègre des bois (Minois dryas (Scopoli, 1763)) sur la rive sud du lac de Neuchâtel. Entomo Helvetica, 2, 201–216. https://boris.unibe.ch/id/ eprint/36757 166 S. Berkane, H. Hafi r, R. Moulaï Pielou, E. C. 1969. Introduction to Mathematical Ecology. Witley-Interscience, John Wiley and Sons Inc; 2nd edition, New York, 1–292. P.N.G. 2007. Plan de gestion du parc national de Gouraya. Ed. Parc national Gouraya-Direction des forêt Gouraya, Bejaia, Algérie, 1–19. Pollard, E. 1977. A method for assessing change in the abundance of butterfl ies. Biological Conservation, 12 (2), 115–134. Pollard, E., Yates, T. J. 1993. Monitoring Butterfl ies for Ecology and Conservation. Ed. Chapman and Hall, Con- servation Biologiy Series, London, 1–174. Pons, A., Quezel, P. 1955. Contribution à l´étude de la végétation des rochers maritimes du littoral de l´Algérie central et occidentale. Bulletin de la société d´histoire naturelle de l´Afrique du Nord, 46, 48–80. Ramade, F. 1984. Elément d´écologie : écologie fondamentale. Ed. McGraw-Hill, Paris, 1–379. Rebbas, K. 2002. Contribution à l´étude de la végétation du parc national Gouraya (Béjaïa, Algérie) : étude phytosociologique. Mémoire de Magistère, Université de Sétif, Algérie, 1–115. Rebbas, K. 2014. Développement durable au sein des aires protégées algériennes, cas du Parc National de Gouraya et des sites d´intérêt biologique et écologique de la région de Béjaïa. Th èse de doctorat d´état, Université de Sétif, Algérie, 1–192. Rebbas, K., Vela, E., Gharzouli, R., Djellouli, Y., Alatou, D., Gachet, S. 2011. Caractérisation phytosociologique de la végétation du parc national de Gouraya (Béjaïa, Algérie). Revue d´écologie-la Terre et la Vie, 66(3), 267–289. http://hdl.handle.net/2042/55884 Remini, L., Moulaï, R. 2015. Diversity and structure of butterfl y populations in agro-ecosystems of Mitidja (Al- geria). Zoology and Ecology, 25 (4), 355–364. https://doi.org/10.1080/21658005.2015.1090119 Robineau, R. 2007. Guide des papillons nocturnes de France. Ed. Delachaux et Niestl, Les Guides Du Naturaliste, Paris, 1–288. Saidi, A. 2013. Contribution à l´étude de la relation fl eurs-papillons de jours au Parc National de Gouraya (Bejaïa). Mémoire de Master, Université de Bejaia, Algérie, 1–89. Samraoui, B. 1998. Status and seasonal patterns of adult Rhopalocera (Lepidoptera) in north-eastern of Algeria. Entomologischer Verein Apollo, 19 (3/4), 285–298. Scherrer, B. 1984. Biostatistique. Ed. Chicoutimi : Gaëtan Morin (Québec), Canada, 1–850. Schweiger, O., Dormann, C. F., Bailey, D., Frenzel, M. 2006. Occurrence pattern of Pararge aegeria (Lepidop- tera: Nymphalidae) with respect to local habitat suitability, climate and landscape structure. Landscape Ecology (Springer), 21 (7), 989–1001. https://doi.org/10.1007/s10980-005-6057-7 Schmitt, T. 2003. Biogeography and ecology of southern Portuguese butterfl ies and burnets (Lepidoptera). Proceedings 13th international colloquium European Invertebrate Survey, Leiden, 2–5 september 2001, 69–78. Slaby, O. 1974. Eine Studie über algerische Zygaenen, mit Beschreibung von drei neuen Unterarten (Lep. Zy- gaenidae). Entomologische Zeitschrift Frankfurt am Main, 84, 261–265. Sterry, P., Mackay, A. 2004. Butterfl ies and Moths. Ed. Dorling Kindersley, Pocket Nature, London, 1–224. Still, J., Ovenden, D., Sterry, P. 1996. Voir les papillons. Ed. Arthaud, Vive la Nature. Italie, 1–255. Tarrier, M. R., Delacre, J. 2008. Les papillons de jour du Maroc. Guide d´identifi cation et de bio-indication. ed. Biotope, Mèze, Muséum national d´Histoire naturelle, Paris, 1–480. Tarrier, M. R. 2001. Valeur écologique d´un verger de l´Atlas (Maroc) selon l´évaluation de son indice lépidopterologique. Le Courrier de l´environnement de l´INRA : Institut national de la recherche agronomique Délégation permanente à l´environnement, 42, 90–100. https://hal.archives-ouvertes.fr/hal-01203054 Tennent, W. J. 1996. Th e Butterfl ies of Morocco, Algeria and Tunisia. Ed. Gem Publishing Compny, England, 1–253. Tolman, T., Lewington, R. 1999. Guide des papillons d´Europe et d´Afrique du Nord. Ed. Delâchaux et Niestlés, Paris, 1–320. Van Swaay, C., Wynhoff , I., Wiemers, M., Katbeh-Bader, A., Power, A., Benyamini, D., Tzirkalli, E., Ballet- to, E., Monteiro, E., Karaçetin, E., Franeta, F., Pe´er, G., Welch, H., Th ompson, K., Pamperis, L., Dappor- to, L., Šašić, M., López, Munguira, M., Micevski, N., Dupont, P., Garcia-Pereira, P., Moulai, R., Carua- na, R., Verovnik, R., Bonelli, S., Beshkov, S. 2015. Anthocharis belia, Moroccan Orange Tip. Th e IUCN Red List of Th reatened Species. e.T62148675A62153378. http://dx.doi.org/10.2305/IUCN.UK.2015-2. RLTS.T62148675A62153378.en Vela, E., Benhouhou, S. 2007. Evaluation d´un nouveau point chaud de biodiversité végétale dans le bassin méditerranéen (Afrique du Nord). Comptes Rendus Biologies (Elsevier), 330 (8), 589–605. https://doi. org/10.1016/j.crvi.2007.04.006 Vela, E., Garde, L., Tatoni, T. 1998. Approche diachronique des changements dans les populations de plantes rares sur la crête du grand Luberon. Courrier scientifi que du Parc naturel régional du Luberon et de la Réserve de biosphère Luberon-Lure, 2, 50–69. http://hdl.handle.net/2042/58007 Villemant, C., Fraval, A. 1991. La faune du chêne-liège. Actes éditions, Rabat, 1–336. Weincatner, E., Wahlberg, N., Nylin, S. 2006. Dynamics of host plant use and species diversity in Polygonia butterfl ies (Nymphalidae). Journal of Evolutionary Biology, 19 (2), 483–491.doi: 10.1111/j.1420-9101.2005.01009.x Received 29 November 2020 Accepted 3 March 2021 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice