06_Kruchinenko_05_2022.indd UDC 636.2.09:616–008.89(477.4) PREVALENCE OF FASCIOLIASIS IN RUMINANTS OF THE WORLD — META-ANALYSIS O. V. Kruchynenko*, S. M. Mykhailiutenko, M. O. Petrenko Faculty of Veterinary Medicine, Poltava State Agrarian University, Skovorody st., 1/3, Poltava, 36003 Ukraine *Corresponding author E-mail: oleg.kruchynenko@pdaa.edu.ua O.V. Kruchynenko (https://orcid.org/0000-0003-3508-0437) S. M. Mykhailiutenko (https://orcid.org/0000-0001-6634-1244) M. O. Petrenko (https://orcid.org/0000-0002-5275-9401) Prevalence of Fascioliasis in Ruminants of the World — meta-analysis. Kruchynenko, O. V., Mykhailiutenko, S. M., Petrenko, M. O. — Among the gastrointestinal parasitoses, fascioliasis is one of the most common diseases in ruminants. Fasciola spp. is recorded on fi ve continents of the globe, in more than 50 countries. Th e parasitizing trematode causes economic losses associated with a decrease in milk yield, body weight, and culling of aff ected carcasses and organs. In this study, we aimed to quantify the prevalence of fascioliasis among ruminants (cattle, sheep and goats) of the world in terms of the odds ratio according to the Mantel–Haenszel test (M–H). Online databases in English, Russian and Ukrainian languages were searched for publications from January 2002 to September 2020. Th is meta-analysis included 42 studies with ruminant hosts. Data on the spread of fascioliasis were collected from diff erent continents of the globe: North and South America, Europe, Asia and Africa. Th e results of the study found that the overall prevalence of fascioliasis in cattle was 6.41 %, while in small ruminants it was only 2.03 %. Th e disease in cattle was recorded 1.48 times more oft en than in sheep and goats. Egger’s regression test revealed no signifi cant publication bias (P = 0.265). Th e results of the meta-analysis confi rm that the causative agent of fascioliasis circulates mainly in the emerging countries. Th e updated data on fascioliasis will expand the screening strategy to maintain the health of farm ruminants and reduce economic losses. K e y w o r d s : prevalence; Fasciola hepatica; Fasciola gigantica; cattle; sheep; goats; meta-analysis. Introduction Fascioliasis is a widespread, oft en chronic trematodosis of mainly ruminants (cattle, sheep, goats), recorded on all continents of the globe (Dalton, 1999; Mas-Coma et al., 2005; 2009; Rinaldi, 2015) and causing signifi cant economic losses to livestock farms (Jaja et al., 2017; Arbabi et al., 2018; Ouchene-Khelifi et al., 2018; Nyirenda, 2019; Arias-Pacheco, 2020). For example, global production losses due to fascioliasis alone amount to US $ 3.2 billion per year (Mehmood et al., 2017). Fascioliasis is also a zoonotic “neglected tropical disease” (WHO, 2013), which poses a signifi cant risk to public health (Mas-Coma et al., 2014 a) and is, in some cases, lethal (Mas-Coma et al., 2014 b). According to global estimations, nearly 17 million people are infected worldwide (Mas-Coma et al., 2009). Zoodiversity, 56(5):419–428, 2022 DOI 10.15407/zoo2022.05.419 Parasitology 420 O. V. Kruchynenko, S. M. Mykhailiutenko, M. O. Petrenko Th e causative agents of fascioliasis are two species of trematodes of the genus Fasciola, Fasciola hepatica L., 1758 and F. gigantica Cobbold, 1855 F. hepatica has a worldwide distribution, while F. gigantica is found mainly in the tropical Asia and Africa (Torgerson and Claxton, 1999). In addition, it has been shown that both species can occur in subtropical regions and hybridize (Agatsuma et al., 2000; Mas-Coma et al., 2009; Peng et al., 2009; Aghayan et al., 2019). Interestingly, molecular biological analysis of Fasciola spp. in some cases indicates the absence of hybrid forms (Walker, 2008; Mirahmadi, 2018), while in other cases, these forms are present (Le et al., 2008; Peng et al., 2009; Amer, 2016). Th e life cycle of F. hepatica and F. gigantica is dixenous. Th e fi rst intermediate host is a pulmonary mollusk of the family Lymnaeidae (Mas-Coma and Bargues, 1997; Mas-Coma et al., 2014). Th e cercariae emerging from infected mollusks encyst in the external environment, mainly on plants. Infection of the fi nal hosts occurs when eating plants with invasive adolescaria (Dalton, 1999). Th e fascioliasis can be diagnosed using the classical methods of helminthological dissection (Skrjabin, 1928) scatological methods (Esteban et al., 1998; Cringoli et al., 2010; 2017; Al-Mamunet al., 2011; Carneiro et al., 2018; Zárate-Rendón et al., 2019), and enzyme-linked immunosorbent test systems, ELISA (Hillyer, 1999; Akca et al., 2014; Munita et al., 2019). It has been shown that both scatological and ELISA have similar resolution (George et al., 2019), which makes the previously obtained results comparable and allows for eff ective control of the prevalence of fascioliasis. Information on the prevalence of fascioliasis among diff erent host species is highly controversial. Th us, in a number of cases, the prevalence rate of cattle was higher than that of sheep and goats (Sharma et al., 1989; Adediran et al., 2014; Jean-Richard et al., 2014; Kusumarini et al., 2020); in some cases it was, in contrast, lower (Akca et al., 2014; Tikuye, 2017); in other studies the rates did not diff er (Yuan et al., 2016; Jones et al., 2016; Mokhber Dezfouli et al., 2016; Ayele et al., 2018). Th e aim of this study was to conduct a meta-analysis of the distribution of Fasciola spp. in cattle and small ruminants (sheep and goats) in terms of the odds ratio based on a random eff ects model according to the Mantel–Haenszel criterion (M–H), which will make it possible to establish which species of animals is infected more oft en. Material and methods I n f o r m a t i o n s o u r c e s a n d s e a r c h Th e meta-analysis used the “Preferred reporting items for systematic review and meta-analysis” (PRISMA) recommendations (Moher, 2009). It was performed using ReviewManager (RevMan 5.4), certifi ed freeware of Cochrane Collaboration (revman.cochrane.org). An in–depth search of publications was carried out in PubMed, GoogleScholar, ScienceDirect, SpringerLink, DOAJ, eLIBRARY.RU databases. Two authors independently searched for literature in English, Russian and Ukrainian. Th e search was carried out using the following keywords: Fasciola hepatica, Fasciola gigantica, cattle, sheep, goat, fascioliasis, prevalence. E l i g i b i l i t y c r i t e r i a , s t u d y s e l e c t i o n a n d d a t a c o l l e c t i o n Th e exclusion criteria were: 1 — the study reported data on the detection of Fasciola spp. only for one host species or species that we did not include in the analysis (for example, buff alo); 2 — the total number of stud- ies performed was less than 70 in each group; 3 — the exact number of positive cases in the surveyed animals could not be determined; 4 — publications duplicated each other. Subsequently, disagreements between the authors were resolved through discussion and consensus with the third author. Data for analysis were sampled in the period from January 2002 to September 2020. Our meta-analysis included 42 articles (fi g. 1). Data on the spread of fascioliasis were collected from diff erent continents of the globe: North and South America, Europe, Asia and Africa. Th e diagnosis was confi rmed with tests of blood serum (ELISA), feces and posthumous (liver examination). A n a l y t i c a l a p p r o a c h Th e data in the meta–analysis, namely the number of positive cases among the examined animals of cattle and small ruminants (sheep and goats), were analyzed on the basis of a random eff ects model according to the Mantel–Haenszel test (M–H). Th e null hypothesis H0 was that the number of cases of fascioliasis in cattle and small ruminants does not diff er statistically, while the alternative hypothesis H1 was that the fascioliasis is more common in a certain animal species. I2 values of 25 %, 50 % and 75 % were considered as low, moderate, and high heterogeneity, respectively (Cochrane handbook). Eff ect size (ES) was defi ned as the odds ratio (OR = ad / bc) with 95 % confi dence interval. For fi nal analysis, all extracted data were entered into ReviewManager (RevMan 5.4) provided by the Cochrane Collaboration (revman.cochrane.org). 95 % confi dence intervals were calculated in Open Source Epidemiologic Statistics for Public Health, Version 3.01, updated 2013/04/06 (www. OpenEpi.com). To determine the optimal estimate for frequencies and fractions, including for a small number of observations, the Wilson method was used (Wilson, 1927). Confi dence interval values are given in paren- theses. 421Prevalence of Fascioliasis in Ruminants of the World — meta-analysis Results Table 1 presents the main characteristics of the included studies. According to the table 1, Iran, Ethiopia and Nigeria lead in the number of reported cases of fascioliasis in ruminants. Records identifi ed through database searching (n = 1640) Records aft er duplicates removed (n = 854) Records screened (n = 854) Records excluded (n = 802) Full-text articles assessed for eligibility (n = 52) Full-text articles excluded, with reasons (n = 10) Studies incluted in sysematic review (n = 42) Id en tifi - ca tio n Sc re en in g El ig ib ili ty In cl ut ed Fig 1. Flow diagram of the study design process. T a b l e 1 . Cases of prevalence of fascioliasis in ruminants in the world Autor, year Country Method of diagnosis Cattle Prev. (%), 95 % CI Sheep Prev. (%), 95 % CI Goats Prev. (%), 95 % CI Abdolali et al., 2016 Iran Microscopic 37.9 (31.32–45.1) 26.03 (20.9–31.9) 23.4 (17.7–30.8) Abdulhakim et al., 2012 Ethiopia Post mortem 28.6 (24.35– 33.4) 20.8 (17.1– 25.2) 13.5 (10.5–17.3) Abraham, 2014 Nigeria Microscopic 44.7 (39.9– 49.6) – 36.0 (31.1– 41.2) Adediran et al., 2014 Nigeria Microscopic 54.3 (48.5– 59.9) 12.04 (9.3–15.4) 9.1 (6.7–12.14) Aghayan et al., 2019 Armenia Post mortem 15.7 (12.2– 20.1) 21.2 (19.41– 23.2) 44.4 (18.9– 3.3) Akca et al., 2014 Turkey ELISA 66.6 (62.35–70.6) 92.9 (90.5–94.83) – Al Mamun et al., 2011 Bangladesh Microscopic 37.9 (36.4– 39.4) 30.9 (23.04–40.1) 32.0 (29.5–34.6) Ali et al., 2011 Iran Post mortem 2.4 (1.5–3.9) 6.9 (6.42–7.5) 4.1 (3.9–4.4) Ayele et al., 2018 Ethiopia Microscopic 62.3 (56.7– 67.63) 60.7 (54.9–66.2) – Choubisa & Jaroli, 2012 India Microscopic 18.5 (12.7–26) 21.7 (14.2–31.7) 20.2 ( 13.34–29.4) Cringoli et al., 2002 Italy Microscopic 1.84 (1.2–2.9) 2.3 (1.45–3.6) – 422 O. V. Kruchynenko, S. M. Mykhailiutenko, M. O. Petrenko Dogo et al., 2017 Nigeria Microscopic 6.83 (5.02–9.2) 11.6 (6.44–20.1) 2.83 (1.3–6.03) Garg et al., 2009 India Microscopic 10.8 (10.4–11.2) 2.8 (2.5–3.13) 2.35 (2.1–2.63) Gazimagomedov et al., 2011 Russia Microscopic 16.0 (11.6–21.71) 32.0 (25.93–38.7) – Huklaeva, 2009 Russia Post mortem 19.2 (14.7–24.62) 25.6 (22.8–28.6) 17.5 (10.72–27.3) Hussain et al., 2017 Iraq Post mortem 1.6 (0.8–3.1) 2.9 (1.7–4.9) – Imani Baran et al., 2017 Iran Microscopic 4.3 | (2.4–7.8) 3.5 (2.72–4.43) – Isah, 2019 Nigeria Microscopic 45.7 (44.1–47.4) 38.7 (35.6–42.01) 35.0 (33.4–36.7) Jean-Richard et al., 2014 Africa Post mortem 68.5 (60.0–75.8) 22.7 (16.41–30.6) 12.01 (9.7– 14.82) Jones et al., 2016 UK Microscopic 55.3 (44.1–65.92) 54.4 (44.2–64.34) – Kara et al., 2009 Turkey Post mortem 5.4 (3.8–7.8) 4.42 (3.6–5.5) – Khoramian et al., 2014 Iran Post mortem 3.7 (3.3–4.05) 3.3 (3.2–3.4) 2.8 (2.6–2.84) Kitila et al., 2014 Ethiopia Post mortem 25.9 (17.5–36.7) 7.1 (3.5–13.9) 0.92 (0.16–5.1) Kordshooli et al., 2017 Iran Post mortem 11.15 (10.6–11.7) 5.22 (5.02–5.44) 2.15 (2.1–2.23) Koshevarov, 2011 Russia Microscopic Post mortem 18.5 (15.2–22.4) 25.4 (20.6–30.9) 17.5 (11.8–25.02) Kusumarini et al., 2020 Indonesia Post mortem 29.8 (24.62–35.6) 8.03 (4.3–14.6) 5.7 (4.35–7.4) Liba et al., 2017 Nigeria Post mortem 12.0 (8.8–16.2) 9.0 (6.25–12.8) 7.3 (4.9–10.8) Mohamadzadeh et al., 2016  Iran Post mortem 1.81 (1.7–1.9) 2.3 (2.2–2.4) 0.05 (0.04–0.07) Mokhber Dezfouli et al., 2016  Iran Post mortem 1.9 (1.8–1.97) 1.92 (1.9–1.96) – Mungube et al., 2006 Kenya Post mortem 25.7 (25.2–26.32) 5.2 (4.7–5.8) 6.6 (6.24–6.9) Munguía–Xóchihua et al., 2007 Mexico ELISA 24.4 (22.15–26.7) 30.4 (26.04–35.2) 42.9 (40.2–45.8) Musotsi et al., 2017 Kenya Post mortem 6.5 (6.3–6.8) 6.1 (5.9–6.3) 4.1 (3.82–4.4) Ouchene-Khelif et al., 2018 Algeria Post mortem 17.2 (16.21–18.2) 6.51 (5.9–7.15) 2.5 (2.15–2.9) Piri et al., 2017 Iran Post mortem 1.5 (0.9–2.5) 0.5 (0.4–0.6) 1.4 (0.9–2.1) Sayadi et al., 2015 Iran Post mortem 1.65 (1.6–1.74) 1.12 (1.1–1.15) 1.1 (1.06–1.14) Shahbazi et al., 2016 Iran Post mortem 1.5 (1.45–1.56) 0.8 (0.7–0.82) 0.7 (0.64–0.75) Squire et al., 2018 Ghana Microscopic 4.6 (2.6–7.4) 3.2 (1.3–6.5) 0.4 (0.1–1.9) Taye et al., 2016 Ethiopia Microscopic 36.7 (31.5–42.2) 48.3 (38.4–58.5) – Tikuye 2017 Ethiopia Microscopic 9.52 (5.9–14.91) 37.6 (30.2–45.6) 6.8 (3.3–13.4) Ullah et al., 2016 Pakistan Microscopic 24.3 (15.75–35.5) 16.0 (8.3–28.5) 6.7 (1.8–21.3) Zeleke et al., 2013 Ethiopia Microscopic 69.9 (69.2–70.7) 35.0 (33.1–37.0) 27.1 (24.4–30.0) 423Prevalence of Fascioliasis in Ruminants of the World — meta-analysis A total of 579,258 specimens of cattle and 2,751,936 specimens of small ruminants (sheep and goats) were examined. Of these, 37,162 heads of cattle and 55,920 heads of sheep and goats were infected with fascioliasis (fi g. 2). Assessment of distribution and analysis of heterogeneity. High heterogeneity was found in the studies included in the meta-analysis, І2 = 99 % (P < 0.00001). Th e results of the study established a general distribution of 6.41 % (6.35; 6.48) in cattle, while in small ruminants this indicator was, respectively, 2.03 % (2.01; 2.05). Th e fascioliasis in cattle was recorded 1.48 (1.19; 1.84) times more oft en than in sheep and goats. Since the 95 % confi dence intervals do not include 1, the results can be considered statistically signifi cant (overall eff ect: Z = 3.55; P = 0.0004). In a meta-analysis of the spread of fascioliasis (fi g. 3) in ruminants, publication error was not determined (P = 0.265). Study or Subgroup Abdolali et al. 2016 Abdulhakim et al. 2012 Abraham 2014 Adediran et al. 2014 Aghayan et al., 2019 Akca et al. 2014 Al Mamun et al. 2011 Ali et al. 2011 Ayele et al., 2018 Choubisa & Jaroli, 2012 Cringoli et al., 2002 Dogo et al .2017 Garg et al. 2009 Gazimagomedov et al. 2011 Huklaeva 2009 Hussain et al. 2017 Imani Baran et al., 2017 Isah, 2019 Jean-Richard et al. 2014 Jones et al. 2016 Kara et al. 2009 Khoramian et al. 2014 Kitila et al. 2014 Kordshooli et al. 2017 Koshevarov 2011 Kusumarini et al., 2020 Liba et al. 2017 Mohamadzadeh et al. 2016 Mokhber Dezfouli et al. 2016 Mungube et al., 2006 Munguía-Xóchihua et al. 2007 Musotsi et al. 2017 Ouchene-Khelif et al., 2018 Piri et al., 2017 Sayadi et al. 2015 Shahbazi et al. 2016 Squire et al., 2018 Taye et al. 2016 Tikuye 2017 Ullah et al. 2016 Zeleke et al. 2013 Total (95% CI) Total events Heterogeneity: Tau² = 0.46; Chi² = 4755.66, df = 40 (P < 0.00001); I² = 99% Test for overall effect: Z = 3.55 (P = 0.0004) Events 71 110 179 158 51 333 1571 16 187 24 18 38 2465 32 46 8 10 1628 89 42 28 385 39 1347 83 79 36 545 2615 6079 328 2113 963 15 1340 2834 15 113 16 17 11096 37162 Total 187 384 400 291 324 500 4145 666 300 130 975 556 22835 200 240 500 230 3560 130 76 513 10462 77 12079 448 265 300 29988 137843 23606 1346 32385 5608 995 81012 188968 328 308 168 70 15860 579258 Events 103 132 126 93 385 502 445 1516 170 37 18 16 266 64 234 13 62 1461 104 49 78 7120 16 5197 91 60 49 3112 16724 1485 632 3985 547 79 6317 3715 8 44 63 18 784 55920 Total 413 768 350 880 1803 540 1394 31288 280 177 788 298 9563 200 940 448 1782 4080 748 90 1763 240863 99 178198 398 1008 600 237621 867015 23779 1580 71836 11925 12612 567982 474665 502 91 252 80 2237 2751936 Weight 2.5% 2.6% 2.5% 2.5% 2.5% 2.5% 2.6% 2.3% 2.5% 2.3% 2.1% 2.2% 2.6% 2.4% 2.5% 1.8% 2.1% 2.7% 2.4% 2.2% 2.4% 2.7% 2.1% 2.7% 2.5% 2.5% 2.4% 2.7% 2.7% 2.7% 2.6% 2.7% 2.7% 2.3% 2.7% 2.7% 1.9% 2.4% 2.2% 2.0% 2.7% 100.0% M-H, Random, 95% CI 1.84 [1.27, 2.67] 1.93 [1.45, 2.58] 1.44 [1.07, 1.93] 10.05 [7.33, 13.78] 0.69 [0.50, 0.95] 0.15 [0.10, 0.22] 1.30 [1.14, 1.48] 0.48 [0.29, 0.80] 1.07 [0.77, 1.50] 0.86 [0.48, 1.52] 0.80 [0.42, 1.56] 1.29 [0.71, 2.36] 4.23 [3.72, 4.81] 0.40 [0.25, 0.65] 0.72 [0.50, 1.02] 0.54 [0.22, 1.33] 1.26 [0.64, 2.50] 1.51 [1.38, 1.66] 13.44 [8.80, 20.54] 1.03 [0.56, 1.91] 1.25 [0.80, 1.94] 1.25 [1.13, 1.39] 5.32 [2.65, 10.69] 4.18 [3.92, 4.45] 0.77 [0.55, 1.07] 6.71 [4.63, 9.72] 1.53 [0.97, 2.42] 1.39 [1.27, 1.53] 0.98 [0.94, 1.02] 5.21 [4.90, 5.53] 0.48 [0.41, 0.57] 1.19 [1.13, 1.25] 4.31 [3.86, 4.82] 2.43 [1.39, 4.23] 1.50 [1.41, 1.59] 1.93 [1.84, 2.03] 2.96 [1.24, 7.06] 0.62 [0.39, 0.99] 0.32 [0.18, 0.57] 1.10 [0.52, 2.36] 4.32 [3.93, 4.74] 1.48 [1.19, 1.84] More prevalent in cattle More prevalent in sh.& g Odds Ratio Odds Ratio M-H, Random, 95% CI 0.1 0.2 0.5 1 2 5 10 Cattle Sheep & goats Fig. 2. Meta–analysis of the prevalence of fascioliasis in cattle and small ruminants (chosen measure of eff ect — odds ratio). 424 O. V. Kruchynenko, S. M. Mykhailiutenko, M. O. Petrenko Discussion Most of the studies on meta-analysis and the spread of helminthiases among ruminants are concerned with research within the borders of one state or continent. Such studies can be focused on one disease, for example, fascioliasis (Khademvatan, 2019; Soosaraei, 2020) or a number of zoonotic helminthiases (Bennema et al., 2009; Fürst et al., 2012; Karshima et al., 2018). We present the fi rst meta–analysis of the spread of fascioliasis among ruminants in the world (cattle, sheep and goats). Fasciola spp. trematodes are found in more than 50 countries on fi ve continents, especially in countries with developed animal husbandry. Karshima et al. (2018) conducted a meta–analysis, which found that the causative agent Fasciola gigantica had the widest geographical distribution in Nigeria. Systematic analysis for the period of 1999–2019 showed that the Fasciola infection in Iran was 6.2 % (Khademvatan et al., 2019). A lot of studies have shown that fascioliasis is more common in cattle (Garg, 2009; Abdulhakim et al., 2012; Adediran et al., 2014; Abdolali et al., 2016; Mehmood, 2017; Ghanimatdan et al., 2019; Kusumarini et al., 2020), and in some regions it is found only in cattle (Kruchynenko et al., 2020), but this has not been previously statistically proven. Our study clearly showed that the main fi nal host for Fasciola spp. is cattle. Similar data, obtained by a group of researchers from Iran for the reporting period (2000–2016), confi rm that the prevalence of fascioliasis in cattle is 21 %, and in sheep and goats it was at 2.4 % and 2 %, respectively (Soosaraei et al., 2020). At the same time, a number of studies have shown a higher prevalence of fascioliasis in sheep and goats (Munguía-Xóchihua et al., 2007; Huklaeva, 2009; Gazimagomedov et al., 2011; Taye et al., 2016). For example, the prevalence of that infection in Australia was 52.2 % in sheep and 26.5 % in cattle (Molloy, 2005). However, this is not a global trend and is most likely related to the type of animal housing (indoor or pasture), as well as the sample size in the studies. Conclusions Fascioliasis is an important trematodosis. We analyzed the published data for the period of 2002–2020 in order to update the global distribution and prevent economic losses. Th is disease is reported in ruminants all over the world. It is proved that the total SE(log[OR]) Funnel plot with pseudo 95 % confidence limits P= 0.265 0,5 0,1 0,4 0,3 0,2 0,1 0 0,2 0,5 1 2 5 10 OR Fig. 3. Funnel plot for the binary result (chosen measure of eff ect — odds ratio). Th e x-axis denotes the preva- lence of Fasciola spp. among ruminants, and the y-axis is the standard error of prevalence (P > 0.05 indicates no publication error). 425Prevalence of Fascioliasis in Ruminants of the World — meta-analysis geographic spread of fascioliasis among cattle was 6.41 % versus 2.03 % in small cattle (that is, higher in cattle by 1.48 times). Countries with higher prevalence, predominantly emerging countries, are a potential source of disease transmission and a threat to possible future outbreaks. Th e data presented are intended to improve the current understanding of the geographic distribution of the parasite and host range. Th e information provided will be useful for the application of more eff ective measures to combat fascioliasis in various geo-economic regions of the world. Confl ict of interest Th e authors declare no potential confl icts of interests with respect to the research, authorship and/or publication of this article. Th e current studies are the initiative of the authors and do not have any outside fi nancial support. Th e research was carried out within the framework of the initiative topic for scientifi c work “Monitoring, improvement of diagnostics, treatment and prevention of invasive diseases of animals of the central part of Ukraine” (state registration No. 0112U001560). References Abdolali, M., Abbas, R. N. S., Reza, Ch. S., Nasir, A., Roohollah, Z. Kh., Masood, M., Najmeh, P., Ali, J. 2016. Study on Prevalence of Fascioliasis in Ruminants in Dasht Room County in Spring and Summer of 2013. Animal and Veterinary Sciences, 4 (2), 15–18. doi: 10.11648/j.avs.20160402.11. Abdulhakim, Y., Addis, M. 2012. An abattoir study on the prevalence of fasciolosis in cattle, sheep and goats in Debre Zeit town, Ethiopia, Global Veterinaria, 8 (3), 308–314. Abraham, J. T., Jude, I. 2014. Fascioliasis in cattle and goat slaughtered at Calabar Abattoirs. Journal of Biology, Agriculture and Healthcare, 4, 34–40. Adediran, O. A., Adebiyi, A. I., Uwalaka, E. C. 2014. Prevalence of Fasciola species in ruminants under ex- tensive management system in Ibadan southwestern Nigeria,  African journal of medicine and medical sciences, 43, 137–141. Agatsuma, T., Arakawa, Y., Iwagami, M., Honzako, Y., Cahyaningsih, U., Kang, S. Y., Hong, S. J. 2000. Mo- lecular evidence of natural hybridization between Fasciola hepatica and F. gigantica. Parasitology interna- tional, 49 (3), 231–238. https://doi.org/10.1016/s1383–5769(00)00051–9 Aghayan, S., Gevorgian, H., Ebi, D., Atoyan, H. A., Addy, F., Mackenstedt, U., Romig, T., Wassermann, M. 2019. Fasciola spp. in Armenia: Genetic diversity in a global context. Veterinary parasitology, 268, 21–31. https://doi.org/10.1016/j.vetpar.2019.02.009 Akca, A.,Gokce, H. Mor, N. 2014. Seroprevalence of Fasciola hepatica infection in cattle and sheep in the prov- ince of Kars, Turkey, as determined by ELISA. Helminthologia, 51 (2), 94–97.  https://doi.org/10.2478/ s11687–014–0215–x Al-Mamun, M. A., Bhuiyan, M. J., Zinnah, M. A., Hassan, M. M., Atikuzzaman, M., Uddin, M.B. 2011. Preva- lence of Fasciola sp. infection in ruminants. Eurasian Journal of Veterinary Sciences, 27, 241–244. Amer, S., ElKhatam, A., Zidan, S., Feng, Y., Xiao, L. 2016. Identity of Fasciola spp. in sheep in Egypt. Parasites & Vectors, 9 (1), 623. https://doi.org/10.1186/s13071–016–1898–2 Arbabi, M., Nezami, E., Hooshyar, H., Delavari, M. 2018. Epidemiology and economic loss of fasciolosis and dicro- coeliosis in Arak, Iran. Veterinary world, 11 (12), 1648–1655. https://doi.org/10.14202/vetworld.2018.1648–1655 Arias-Pacheco, C., Lucas, J. R., Rodríguez, A., Córdoba, D., Lux-Hoppe, E. G. 2020. Economic impact of the liver condemnation of cattle infected with Fasciola hepatica in the Peruvian Andes. Tropical animal health and production, 52 (4), 1927–1932. https://doi.org/10.1007/s11250–020–02211–y Ayele, Y., wondmnew F., Yeshiwas, T. 2018. Th e Prevalence of Bovine and Ovine Fasciolosis and the Associated Economic Loss Due to Liver Condemnation in and around Debire Birhan, Ethiopia. Symbiosis Online Publishing Immunology, 6 (3), 1–11. Bennema, S., Vercruysse, J., Claerebout, E., Schnieder, T., Strube, C., Ducheyne, E., Hendrickx, G., Charlier, J. 2009. Th e use of bulk–tank milk ELISAs to assess the spatial distribution of Fasciola hepatica, Ostertagia ostertagi and Dictyocaulus viviparus in dairy cattle in Flanders (Belgium).  Veterinary parasitology,  165 (1–2), 51–57. https://doi.org/10.1016/j.vetpar.2009.07.006 Carneiro, M. B., Martins, I. V., Avelar, B., Scott, F. B. 2018. Sedimentation technique (Foreyt, 2005) for quan- titative diagnosis of Fasciola hepatica eggs. Journal of Parasitic Disease: Diagnosis and Th erapy, 3 (1), 6–9. Choubisa, S. L., Jaroli, V. J. 2013. Gastrointestinal parasitic infection in diverse species of domestic ruminants inhabiting tribal rural areas of southern Rajasthan, India. Journal of parasitic diseases: offi cial organ of the Indian Society for Parasitology, 37 (2), 271–275. https://doi.org/10.1007/s12639–012–0178–0 Cochrane handbook. URL: http://handbook.cochrane.org/ 426 O. V. Kruchynenko, S. M. Mykhailiutenko, M. O. Petrenko Cringoli, G., Maurelli, M. P., Levecke, B., Bosco, A., Vercruysse, J., Utzinger, J., Rinaldi, L. 2017. Th e Mini-FLO- TAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nature protocols, 12 (9), 1723–1732. https://doi.org/10.1038/nprot.2017.067 Cringoli, G., Rinaldi, L., Maurelli, M. P., Utzinger, J. 2010. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nature protocols, 5 (3), 503–515. https://doi.org/10.1038/nprot.2009.235 Cringoli, G., Rinaldi, L., Veneziano, V., Capelli, G., Malone, J. B. 2002. A cross-sectional coprological survey of liver fl ukes in cattle and sheep from an area of the southern Italian Apennines. Veterinary parasitolo- gy, 108 (2), 137–143. https://doi.org/10.1016/s0304–4017(02)00183–8 Dalton, J. P., ed., 1999. Fasciolosis. CAB International Publishing, Wallingford, Oxon, 1–552. Dogo, G. I. Abraham, Karaye, P. Gloria, Patrobas, M. G., Galadima, M., Gosomji, I. J. 2017. Prevalence of gas- trointestinal parasites and their impact in domestic animals in Vom, Nigeria. Saudi Journal of Medical and Pharmaceutical Sciences, 3, 211–216. Esteban, J. G., Bargues, M. D., Mas-Coma, S. 1998. Geographical distribution, diagnosis and treatment of hu- man fascioliasis: a review. Research and Reviews in Parasitology, 58 (1), 13–42. Fürst, T., Keiser, J., Utzinger, J. 2012. Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Th e Lancet Infectious diseases, 12 (3), 210–221. https://doi.org/10.1016/S1473–3099(11)70294–8 Garg, R., Yadav, C. L., Kumar, R. R., Banerjee, P. S., Vatsya, S., Godara, R. 2009. Th e epidemiology of fasciolosis in ruminants in diff erent geo-climatic regions of north India. Tropical animal health and production, 41 (8), 1695–1700. https://doi.org/10.1007/s11250–009–9367–y Gazimagomedov, M. G., Ataev, A. M. 2011. Gelmintyi domashnih zhvachnyih zhivotnyih v Dagestane [Helminths of domestic ruminants in Dagestan]. Rossiyskiy parazitologicheskiy zhurnal, 4, 27–30 [In Russian]. George, S. D., George, A. J., Rolfe, P. F., Emery, D. L. 2019. Comparative assessment of faecal diagnostics for detection and predictive modelling of endemic Fasciola hepatica infection in sheep and cattle on Australian farms. Veterinary Parasitology, 276, 100001. https://doi.org/10.1016/j.vpoa.2018.100001 Ghanimatdan, M., Chalechale, A., Rezaei, F., Rokni, M. B., Shahrokhi, S. R. 2019. Bioclimatic Analysis and Spa- tial Distribution of Livestock Fascioliasis in Iran. Iranian journal of parasitology, 14 (1), 41–51. Huklaeva, M. G. 2009. Epizootologiya zhvachnyih zhivotnyih v Chechenskoy respublike [Epizootology of fasciolosis of ruminant in Chechen Republic]. Rossiyskiy parazitologicheskiy zhurnal. 4, 63–66 [In Russian]. Hussain, K., Zghair, Z. R. 2017. Prevalence of fasciolosis in ruminant in Karbala city. Journal of entomology and zoology studies, 5, 364–369. Hillyer, G. V. 1999. Immunodiagnosis of human and animal fasciolosis. In: Dalton, J. P., ed. Fasciolosis. CAB International Publishing, Wallingford, Oxon, UK, 435–447. Imani Baran, A., Cheraghi Saray, H., Katiraee, F. 2017. Molecular Determination of  Fasciola Spp. Isolates from Domestic Ruminants Fecal Samples in the Northwest of Iran. Iranian journal of parasitology, 12 (2), 243–250. Isah, U. M. 2019. Studies on the prevalence of fascioliasis among ruminant animals in northern Bauchi state, north- eastern Nigeria. Parasite epidemiology and control, 5, e00090. https://doi.org/10.1016/j.parepi.2019.e00090 Jaja, I. F., Mushonga, B., Green, E., Muchenje, V. 2017. Financial loss estimation of bovine fasciolosis in slaughtered cattle in South Africa. Parasite Epidemiology and Control, 2 (4), 27–34. https://doi.org/10.1016/j.parepi.2017.10.001 Jean-Richard, V., Crump, L., Abicho, A. A., Naré, N. B., Greter, H., Hattendorf, J., Schelling, E., Zinsstag, J. 2014. Prevalence of Fasciola gigantica infection in slaughtered animals in south-eastern Lake Chad area in relation to husbandry practices and seasonal water levels. BMC veterinary research, 10, 81. https://doi. org/10.1186/1746–6148–10–81 Jones, R. A., Brophy, P. M., Mitchell, E. S., Williams, H. W. 2017. Rumen fl uke (Calicophoron daubneyi) on Welsh farms: prevalence, risk factors and observations on co–infection with Fasciola hepatica. Parasitology, 144 (2), 237–247. https://doi.org/10.1017/S0031182016001797 Kara, M.,  Gİcİk, Y.,  Sarİ, B.,  Bulut, H.,  Arslan, M. O. 2009. A slaughterhouse study on prevalence of some helminths of cattle and sheep in Malatya Province, Turkey. Journal of Animal and Veterinary Advances, 8 (11), 2200–2205. Karshima, S. N., Maikai, B. V., Kwaga, J. 2018. Helminths of veterinary and zoonotic importance in Nigerian ruminants: a 46–year meta–analysis (1970–2016) of their prevalence and distribution. Infectious diseases of poverty, 7 (1), 52. https://doi.org/10.1186/s40249–018–0438–z Khademvatan, S., Majidiani, H., Khalkhali, H., Taghipour, A., Asadi, N., Yousefi , E. 2019. Prevalence of fasciolosis in livestock and humans: A systematic review and meta-analysis in Iran.  Comparative immunology, microbiology and infectious diseases, 65, 116–123. https://doi.org/10.1016/j.cimid.2019.05.001 Khoramian, H., Arbabi, M., Osqoi, M. M., Delavari, M., Hooshyar, H., Asgari, M. 2014. Prevalence of ruminants fascioliasis and their economic eff ects in Kashan, center of Iran.  Asian Pacifi c Journal of Tropical Biomedicine, 4, 918–922. doi: 10.12980/APJTB.4.2014APJTB–2014–0157 Kitila, D. B., Megersa, Y. C. 2014. Pathological and serum biochemical study of liver fl uke infection in ruminants slaughtered at ELFORA Export Abattoir, Bishoft u, Ethiopia. Global Journal of Medical Research: C Microbiology and Pathology, 14 (8), 6–20. Kordshooli, M. S., Solhjoo, K., Armand, B., Dowlatkhah, H., Jahromi, M. E. 2017. A reducing trend of fasciolosis in slaughtered animals based on abattoir data in South of Iran. Veterinary world, 10 (4), 418–423. https:// doi.org/10.14202/vetworld.2017.418–423 427Prevalence of Fascioliasis in Ruminants of the World — meta-analysis Koshevarov, N. I. 2011. Tsirkulyatsiya fastsioleznoy invazii zhivotnyih v usloviyah Nechernozemya RF [Circulation of Fasciola hepatica infection in Nonchernozemje of Russia]. Rossiyskiy parazitologicheskiy zhurnal, 1, 62–65 [In Russian]. Kruchynenko, O. V., Mykhailiutenko, S. M., Petrenko, M. A., Kuzmenko, L. M. 2021. Prevalence of gastrointestinal helminths in ruminants in Ukraine: A 5-year meta-analysis. Biosystems Diversity, 29 (3), 251–257. https://doi.org/10.15421/012131 Kusumarini, S. R., Permata, F. S., Widyaputri T., Prasetyo, D. 2020. Prevalence of fasciolosis emphasis on age, origin, body condition and post mortem by geographic information systems on sacrifi cial examination in Malang District — East Java. Journal of Physics: Conference Series 1430, 012025. Le, T. H., De, N. V., Agatsuma, T., Th i Nguyen, T. G., Nguyen, Q. D., McManus, D. P., Blair, D. 2008. Human fascio- liasis and the presence of hybrid/introgressed forms of Fasciola hepatica and Fasciola gigantica in Vietnam. Inter- national journal for parasitology, 38 (6), 725–730. https://doi.org/10.1016/j.ijpara.2007.10.003 Liba, J. W., Atsanda, N. N., Francis, M. I. 2017. Economic loss from liver condemnation due to Fasciolosis in slaughtered ruminants in Maiduguri abattoir, Borno State, Nigeria. Journal of Advanced Veterinary and Animal Research, 4, 65–70. doi:10.5455/javar.2017.d192 Mas-Coma, S., Bargues, M. D. 1997. Human liver fl ukes: a review. Research and Reviews ill Parasitology, 57 (3–4), 145–218. Mas-Coma, S., Bargues, M. D., Valero, M. A. 2005. Fascioliasis and other plant–borne trematode zoonoses. In- ternational journal for parasitology, 35 (11–12), 1255–1278. https://doi.org/10.1016/j.ijpara.2005.07.010 Mas-Coma, S., Valero, M. A., Bargues, M. D. 2009. Chapter 2. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Advances in parasitology, 69, 41–146. https://doi.org/10.1016/S0065–308X(09)69002–3 Mas-Coma, S., Valero, M. A., Bargues, M. D. 2014 a. Fascioliasis. In: Toledo, R., Fried, B., eds. Digenetic Trema- todes. Advances in Experimental Medicine and Biology, 766, 77–114. Mas-Coma, S., Agramunt, V. H., Valero, M. A., 2014 b. Neurological and ocular fascioliasis in humans. Ad- vances in Parasitology , 84, 27–149. Mehmood, K., Zhang, H., Sabir, A. J., Abbas, R. Z., Ijaz, M., Durrani, A. Z., Saleem, M. H., Ur Rehman, M., Iqbal, M. K., Wang, Y., Ahmad, H. I., Abbas, T., Hussain, R., Ghori, M. T., Ali, S., Khan, A. U., Li, J. 2017. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microbial pathogenesis, 109, 253–262. https://doi.org/10.1016/j.micpath.2017.06.006 Mirahmadi, H., Bigleri, P., Sekandarpour, S., Modrek, M. J., Shafi ei, R. 2018. Molecular and phylogenetic char- acterisation of Fasciola spp. Isolated from cattle and sheep in Southeastern Iran.  Bulgarian Journal of Veterinary Medicine, 21, 86–93. doi:10.15547/bjvm.1043 Mohamadzadeh, T., Shams, S., Khanaliha, K., Marhamatizadeh, M., Vafa, A. 2016. A study on prevalence of some helminthic infections of the liver and lungs among ruminants in abattoir of Fars province, Iran. Ar- chives of Razi Institute, 71 (4), 245–251. doi: 10.22034/ari.2016.107509 Moher, D., Liberati, A., Tetzlaff , J., Altman, D. G., PRISMA Group. 2009. Preferred reporting items for sys- tematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6 (7), e1000097. https://doi. org/10.1371/journal.pmed.1000097 Mokhber Dezfouli, M., Abbasi, J., Sadeghian Chaleshtori, S., Akbarein, H., Khanjari, A. (2016). Prevalence of liver parasitic infections in sheep and cattle slaughtered in torbat-e-heidarieh abattoir, northeast iran. Iranian journal of ruminants health research, 1 (2), 17–22. https://www.sid.ir/en/journal/ViewPaper.aspx?id=607951 Molloy, J. B., Anderson, G. R., Fletcher, T. I., Landmann, J., Knight, B. C. 2005. Evaluation of a commercially available enzyme-linked immunosorbent assay for detecting antibodies to Fasciola hepatica and Fasciola gigantica in cattle, sheep and buff aloes in Australia. Veterinary parasitology, 130 (3–4), 207–212. https:// doi.org/10.1016/j.vetpar.2005.02.010 Mungube, E. O., Bauni, S. M., Tenhagen, B. A., Wamae, L. W., Nginyi, J. M., Mugambi, J. M. 2006. Th e prevalence and economic signifi cance of Fasciola gigantica and Stilesia hepatica in slaughtered animals in the semi-arid coastal Kenya. Tropical animal health and production, 38 (6), 475–483. https://doi.org/10.1007/s11250–006–4394–4 Munguía-Xóchihua, J. A., Ibarra-Velarde, F., Ducoing-Watty, A., Montenegro-Cristino, N., Quiroz-Romero, H. 2007. Prevalence of Fasciola hepatica (ELISA and fecal analysis) in ruminants from a semi-desert area in the northwest of Mexico. Parasitology research, 101 (1), 127–130. https://doi.org/10.1007/s00436–006–0438–y Munita, M. P., Rea, R., Martínez-Ibeas, A. M., Byrne, N., Kennedy, A. E., Sekiya, M., Mulcahy, G., Sayers, R. 2019. Comparison of four commercially available ELISA kits for diagnosis of Fasciola hepatica in Irish cattle. BMC Veterinary Research, 15, 414. https://doi.org/10.1186/s12917–019–2160–x Musotsi, P., Otieno, C.A., Njoroge, S. M. 2017. Prevalence of Fasciolosis in Cattle, Sheep, and Goats Slaughtered in Slaughter Slabs in Trans-Nzoia West, Kenya and Knowledge of Livestock Handlers. Journal of Biology, Agriculture and Healthcare, 7, 34–43. Nyirenda, S. S., Sakala, M., Moonde, L., Kayesa, E., Fandamu, P., Banda, F., Sinkala, Y. 2019. Prevalence of bo- vine fascioliasis and economic impact associated with liver condemnation in abattoirs in Mongu district of Zambia. BMC veterinary research, 15 (1), 33. https://doi.org/10.1186/s12917–019–1777–0 Ouchene-Khelifi , N. A., Ouchene, N., Dahmani, H., Dahmani, A., Sadi, M., Douifi , M. 2018. Fasciolosis due to Fasciola hepatica in ruminants in abattoirs and its economic impact in two regions in Algeria. Tropical biomedicine, 35 (1), 181–187. 428 O. V. Kruchynenko, S. M. Mykhailiutenko, M. O. Petrenko Peng, M., Ichinomiya, M., Ohtori, M., Ichikawa, M., Shibahara, T., Itagaki, T. 2009. Molecular characterization of Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola spp. in China based on nuclear and mi- tochondrial DNA. Parasitology research, 105 (3), 809–815. https://doi.org/10.1007/s00436–009–1459–0 Piri, K., Maghsood, A. H., Matini, M., Fallah, M. 2017. Prevalence and Intensity of Fasciola spp. Infection in Slaughtered Livestock in the Hamadan Slaughterhouse in 2015. Avicenna Journal of Clinical Medicine, 24 (2), 164–170. Rinaldi, L., Biggeri, A., Musella, V., De Waal, T., Hertzberg, H., Mavrot, F., Torgerson, P. R., Selemetas, N., Coll, T., Bosco, A., Grisotto, L., Cringoli, G., Catelan, D. 2015. Sheep and Fasciola hepatica in Europe: the GLOWORM experience. Geospatial health, 9 (2), 309–317. https://doi.org/10.4081/gh.2015.353 Sayadi, M., Rezaei, M., Jahanbakhsh, M., Gholamrezaei, M., Mohammad-Pourfard, I., Yahyaei, M. 2015. Th e Prevalence of Fascioliasisin Slaughtered Animals of the Industrial Slaughterhouse of Arak, Iran. Iranian Journal of Health Sciences, 3 (4), 59–64. Shahbazi, Y., Hashemnia, M., Safavi, E. A. 2016. A retrospective survey of liver fl ukes in livestock based on abat- toir data in Kermanshah, west of Iran. Journal of parasitic diseases: offi cial organ of the Indian Society for Parasitology, 40 (3), 948–953. https://doi.org/10.1007/s12639–014–0612–6 Sharma, R. L., Dhar, D. N., Raina, O. K. 1989. Studies on the prevalence and laboratory transmission of fas- cioliasis in animals in the Kashmir Valley.  Th e British veterinary journal,  145 (1), 57–61. https://doi. org/10.1016/0007–1935(89)90010–9 Skrjabin, K. I. 1928. Metody polnykh gel’mintologicheskikh vskrytii pozvonochnykh, vklyuchaya cheloveka [Methods of full helminthological autopsy of vertebrates, including humans]. Moscow State University, Moscow, 1–45 [In Russіаn]. Soosaraei, M., Fakhar, M., Teshnizi, S. H., Emameh, R. Z., Hezarjaribi, H. Z., Asfaram, S., Faridnia, R., Ka- lani, H. 2020. Status of fasciolosis among domestic ruminants in Iran based on abattoir data: a systematic review and meta-analysis. Annals of parasitology, 66 (1), 77–86. https://doi.org/10.17420/ap6601.240 Squire, S. A., Yang, R., Robertson, I., Ayi, I., Squire, D. S., Ryan, U. 2018. Gastrointestinal helminths in farmers and their ruminant livestock from the Coastal Savannah zone of Ghana. Parasitology research, 117 (10), 3183–3194. https://doi.org/10.1007/s00436–018–6017–1 Taye, M., Jagema, T., Tadese, A., Mulatu, E., Lelisa, K., Damena, D. 2016. Study of ruminant fasciolosis in se- lected districts in Upper Awash River Basin, South Western Shoa, Ethiopia. Journal of Veterinary Science and Technology, 368. Tikuye, S. 2017. Study on prevalence of ruminant fasciolosis and its associated risk factors in Kombolcha, North East Ethiopia. Journal of Veterinary Science & Technology, 8, 100461. Torgerson, P., Claxton, J. 1999. Epidemiology and control. In: Dalton, J. P., ed. Fasciolosis. CAB International Publishing, Wallingford, Oxon, UK, 113–149. Ullah, I., Nisar, M. F., Jadoon, A. A. K., Tabassum, S. 2016. Prevalence of Fasciola hepatica in domesticated cattle of District Karak, Khyber Pakhtunkhwa, Pakistan. Asian Journal of Animal Sciences, 10, 85–91. doi: 10.3923/ajas.2016.85.91 Walker, S. M., Makundi, A. E., Namuba, F. V., Kassuku, A. A., Keyyu, J., Hoey, E. M., Prödohl, P., Stothard, J. R., Trudgett, A. 2008. Th e distribution of Fasciola hepatica and Fasciola gigantica within southern Tanzania-constraints associated with the intermediate host.  Parasitology,  135 (4), 495–503. https://doi. org/10.1017/S0031182007004076 Wilson, E. B. 1927. Probable inference, the law of succession, and statistical inference. Journal of the Ameri- can Statistical Association, 22, 209–212. World Health Organization, 2013. Sustaining the drive to overcome the global impact of neglected tropical dis- eases. Department of Control of Neglected Tropical Diseases, Geneva: World Health Organization, WHO Headquarters, 1–128. Yuan, W., Liu, J. M., Lu, K., Li, H., Duan, M. M., Feng, J. T., Hong, Y., Liu, Y. P., Zhou, Y., Tong, L. B., Lu, J., Zhu, C. G., Jin, Y. M., Cheng, G. F., Lin, J. J. 2016. Molecular identifi cation and seasonal infections of species of Fasciola in ruminants from two provinces in China. Journal of helminthology, 90 (3), 359–363. https://doi.org/10.1017/s0022149x15000383 Zárate-Rendón, D. A., Vlaminck, J., Levecke, B., Briones-Montero, A., Geldhof, P. 2019. Comparison of Ka- to-Katz Th ick Smear, Mini-FLOTAC, and Flukefi nder for the Detection and Quantifi cation of  Fasciola hepatica Eggs in Artifi cially Spiked Human Stool. Th e American journal of tropical medicine and hy- giene, 101 (1), 59–61. https://doi.org/10.4269/ajtmh.18–0988 Zeleke, M. A., Tadesse, A., Kumar, B. A. 2013. Epidemiology of fasciolosis in Southwest Ethiopia. Journal of Ad- vanced Veterinary Research, 3, 127–134. Received 19 January 2022 Accepted 28 October 2022