05_Zuniga_05_2022.indd UDC 598.279(835) DIET COMPOSITION OF THE AUSTRAL PYGMY OWL IN A PERI-URBAN PROTECTED AREA IN SOUTH-CENTRAL CHILE A. H. Zúñiga1,2*, J. R. Rau2, V. Fuenzalida3, R. Sandoval4 1Departamento de Ciencias Agronómicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile 2Laboratorio de Ecología, Departamento de Ciencias Biológicas, Universidad de Los Lagos, Osorno, Chile 3Consultoro Ambientes del Sur, Temuco, Chile 4Red de la Conservación de Nahuelbuta, Contulmo, Chile *Corresponding author E-mail: alfredo.zuniga@ufrontera.cl Diet Composition of the Austral Pygmy Owl in a Peri-Urban Protected Area in South-Central Chile. Zúñiga, A. H., Rau, J. R., Fuenzalida, V., Sandoval, R. — Th e diet of the Austral Pygmy Owl, Glaucidium nana, a small raptor, was studied by pellet analysis. During fall of 2020, 52 pellets were collected in a peri-urban protected area. Amongst 122 prey items, Muridae, represented exclusively by the alien species Rattus rattus and Rattus norvegicus, made up 35.24 % by number and 67.1 % of the biomass, followed by native Cricetidae, at a 37.69 % by number and 17.9 % by biomass. In the last place in relative frequency were birds and arthropods. Th e biomass contribution was unequal among the diff erent prey, being the alien prey the group with the highest profi t. Th e role of the landscape in the composition of prey in the observed trophic spectrum is discussed. K e y w o r d s : Austral Pygmy Owl, biomass, diet composition, landscape transformation, trophic behavior, rodents. Introduction Th e Austral Pygmy Owl (Glaucidium nana King, 1828) is a raptor of the Strigidae family, with a wide distribution throughout the Chilean territory, that is from 27o S to 53o S (Pavez, 2004). It is a generalist raptor in spatial terms, being able to use diverse habitats through this distribution (Pavez, 2004; Ibarra et al., 2015). Regarding to its diet, there are reports based on a general consumption regarding the diversity of prey, highlighting small mammals, birds and invertebrates mainly in North-central Chile (Jiménez & Jaksic, 1989; Jiménez & Jaksic, 1993; Jaksic et al., 1993). However, there are information gaps about their feeding habits in other latitudes (Jaksic, 1997), which is of special interest about changes in prey selectivity associated with their abundance (Jaksic, 1989). In Southern-central Chile, where this raptor is largely associated with native forest (Rozzi et al., 1996), exists with an important diversity of potential prey (Peña, 1992; Murúa, 1996; Rozzi et al., 1996). However, the progressive reduction and conversion of the native forest in recent decades has put considerable pressure on ecological communities, homogenizing the diversity of species (Echeverría et al., 2008). In the same way, there are information gaps regarding their dietary habits in urban and peri-urban environments, which is of interest in relation to their knowledge due to both the structural modifi cation of their natural environment, as well as the alteration in the availability of resources (Solaro, 2018), with changes in the feeding spectra (McPherson et al., 2021). Th e objective of this study is to document the diet of the Austral Pygmy Owl in a peri-urban protected area in Southern-central Chile. Zoodiversity, 56(5):413–418, 2022 DOI 10.15407/zoo2022.05.413 414 A. H. Zúñiga, J. R. Rau, V. Fuenzalida, R. Sandoval S t u d y a r e a Cerro Ñielol National Monument is a protected area in Southern-central Chile (38º43’ S 72º35’ W). It has an area of 88 ha, is adjacent to the city of Temuco and belongs to the Huimpil-Ñielol mountain range. Its climate is Mediterranean of the per humid type (Di Castri & Hajek, 1976), and it is represented in terms of vegetation by a deciduous forest, which includes the roble-laurel-lingue formation (Oberdorfer, 1960). 43 % of the plant species in the Natural Monument are of introduced origin, which accounts for the anthropogenic eff ect on a local scale (Hauenstein et al., 1988). Around it, there are both extensions of the original forest of the protected area, as well as fragments of forest plantations (Pinus radiata and Eucalyptus globulus), and thickets dominated by the common gorse Ulex europeaus. Material and methods During May and June 2020 (fall in the southern hemisphere), trails of this protected area were travelled in search of pellets. Pellets were recognized through their morphology (Muñoz-Pedreros & Rau, 2004), and this identifi cation was reinforced through auditory records of the species at the collection site (Egli, 2006). Subsequently, pellets were collected in paper bags and stored for further processing. In laboratory, pellets were manually shredded to obtain undigested prey remains, which were visualized using an electronic magnifying glass. Th ese were identifi ed through keys associated with hair, feathers and skulls (Day, 1966; Chehébar & Martin, 1989; Pearson, 1995), as well as reference collections. Th e analysis of the diet was carried out based on the frequency of occurrence of the diff erent prey in relation to the total observed (Rau, 2000). Dietary diversity was calculated through the Levins index β (Levins, 1968). Th is index fl uctuates between 0 and n, where n is the number of prey categories obtained, which allows us to observe the degree of uniformity in their consumption. Th e standard deviation of this index was calculated through the jackknife procedure (Jaksic & Medel, 1987). To determine the eff ect of prey biomass on the dietary spectrum, the geometric mean of their respective weights was calculated (Jaksic & Barker, 1983). In parallel, the method of trophic isoclines was used (Kruuk & DeKock, 1980), those that allow establishing a relationship between the biomass consumed and the frequency of preys (Rau, 2000). Th e weights of the registered dams were obtained from Muñoz-Pedreros & Gil (2009) for rodents, Parera (2018) for marsupials, and Norambuena & Riquelme (2014) for birds. Results and discussion A total of 52 pellets were obtained, in which a total of 122 preys were obtained, distributed in three trophic categories: mammals, birds, and arthropods. In mammals, rodents showed the highest frequency, with a representation above 70 %. In this Order, family Cricetidae, predominated with three species (table 1). Next, murids, an alien family, were the second most consumed group, with two species. Arthropods and birds were found in an intermediate group, while marsupials were the group with the least representation. T a b l e 1 . Frequency and percentage of prey consumption by Austral Pygmy Owl in the study area Prey item Frequency (Percentage) Mammals Rodentia Cricetidae Abrothrix longipilis Abtothrix olivaceus Olygoryzomys longicaudatus Muridae Rattus norvegicus Rattus rattus Marsupialia Dromiciops gliroides Birds Unidentifi ed birds Arthropods Unidentifi ed insects Cratomelus armatus 24 (19.67) 13 (10.65) 9 (7.37) 25 (20.49) 18 (14.75) 4 (3.27) 12 (9.83) 9 (7.37) 8 (6.55) 415Diet composition of Austral Pygmy Owl in a Peri-urban protected area in South-central Chile Th e dietary diversity observed was β = 6.38 + 1.09. In relation to the eff ect of biomass, a geometric mean of 55.33 grams was obtained, while in the representation of the trophic iso- clines, it was obtained that both the two murine species and the cricetid Abrothrix longipilis were found in the intermediate segments (between isoclines of 5 % and 20 %; fi g. 1), while birds and Abrothrix olivaceus were located in the lower isocline, between 1 % and 5 %. Th e remaining prey obtained a minimum representation, under the 1 % isocline. Th e numbers of pellets collected is similar to reported in other raptors in the same biogeographic area (Zúñiga et al., 2018), which allows establishing its representativeness in terms of sample size. Th e observed dietary spectrum contrasts greatly with that reported in North-central Chile (Jiménez & Jaksic, 1993; Jaksic et al., 1993), due to the diff erent representation of prey, which accounts for their variation at the latitudinal level. In this sense, this record showed more consistency with reports in southern Chile (Figueroa & Corales, 2015), which is related with the consumption potential to forest-living species. Th e dietary pattern observed in this raptor in the study area could be explained primarily by the transformation of the environment at a local scale, where the conversion of native forest to forest plantations and urbanized sites would result in a change in the rodent assemblage, with a decrease in the diversity of native species, with the Muridae fauna being one of the dominant groups in this environment (Fernández & Simonetti, 2013), which would explain its great ecological plasticity to occupy diverse habitats (Jaksic et al., 2002). Previous reports have found a low contribution of alien rodents in the diet of raptors (Rau et al., 1985), when a recent change in trophic behavior is plausible. Added to this fi nding is the high frequency of records of murids in the study area by means of camera trapping (Zúñiga, unpublished data). Th is fact suggests that the presence of these species could be used by G. nana as alter- native prey, with the alteration of its trophic spectrum (Speziale & Lambertucci, 2013). In the case of native rodents, the composition was similar to that reported in patches of native forest at the same latitude (Zúñiga et al., 2021 a), what would be attributed to the spatial fl exibility of this raptor (Ibarra et al., 2012; Zúñiga et al., 2021 b). Frequency B io m as s (% ) 10 10 0 20 30 40 50 60 1 % 5 % 20 % 50 % 20 30 40 50 R.r. A.l. O.l. A.o. D.g. Bd R.n. Art Fig. 1. Trophic isoclines for Austral Pygmy Owl, Glaucidium nana, in the study area: A. l. — Abrothrix longipi- lis; A. o. — Abrothrix olivaceus; Art — Arthropods; Bd. — Birds; D. g. — Dromiciops gliroides; R. n. — Rattus norvegicus; R. r. — Rattus rattus. 416 A. H. Zúñiga, J. R. Rau, V. Fuenzalida, R. Sandoval In relation to native rodents, the high rate of predation on Abrothrix longipilis and Abrothix olivaceus is notable, which are characterized by their general condition in the use of space (Murúa, 1982; Glanz, 1984), which supposes a wide distribution in the study area. In contrast, the low frequency of consumption of O. longicaudatus by G. nana would be explained by a decrease in its abundance, a consequence of interannual fl uctuations in its population size (Murúa et al., 1986). Th is fact, however, needs to be tested to determine the degree to which variations in the abundance of this rodent can aff ect the consumption of other species. On the other hand, the presence of the marsupial Dromiciops gliroides in the diet of this bird of prey, whose spatial habits are mainly associated with the native forest (Fontúrbel et al., 2010), suggests that G. nana uses this habitat to a signifi cant extent for hunting activities, considering the diff erentiated use of space by prey. Th e seasonal eff ect of the present study would aff ect the pattern of prey diversity, due to the variations in the abundance of species at this temporal level. In this sense, the season on where the present study was carried out coincides with the one with the highest abundance for native rodents (González & Murúa, 1983). However, this pattern diff ers in the case of alien rodents whose reproductive dynamics seem to be more continuous (King et al., 1996), situation for which predators would use this group frequently in the study area (Zuñiga, unpublished data), thus allowing to compensate for the low abundance of native prey. In the case of birds and arthropods, although an intermediate frequency of prey was obtained, the lack of taxonomic resolution for both groups to determine species should be viewed with caution (Greene & Jaksic, 1983), due to the richness of species in both groups in the study area (Rozzi et al., 1996; Peña, 1992). Th is fact, considering the spatial heterogeneity that allow to infer spatial patterns of G. nana with greater precision associated with their hunting habits. Th e observed geometric mean is within the range of rodents, which accounts for the minimum requirement of this group for raptors (Hamilton & Neil, 1981). However, it is suggested the greater importance of murids to be arranged in the trophic isoclines, where they are located in a higher position than to the rest, which if both species are considered together. In this way, it is obtained that the other types of prey, due to their low contribution in biomass, were found in the lowest isocline, thus suggesting that their importance is of a lower order, for which their consumption would be opportunistic. As conclusion, it was observed that the Austral Pigmy Owl mainly consumed alien rodents, considering their greater abundance in the study area, while the native ones exhibited the second place in this spectrum, despite being in the season of greater abundance. Th e anthropized condition of the landscape played a determining role in modifying the supply of local prey, with which this raptor was able to adapt its feeding behavior. Long-term monitoring of rodents is especially important to determine changes in the trophic responses of the species as a function of changes in the abundance of these preys at a specifi c level. References Chehébar, C., Martin, S. 1989. Guía para el reconocimiento microscópico de pelos de mamíferos. Doñana Acta Vertebrata, 16, 247–291. Day, M. G. 1966. Identifi cation of hair and feather remains in the gut and feces of stoats and weasels. Journal of Zoology, 18, 315–326. 10.1111/j.1469-7998.1966.tb02948.x Di Castri, E., E. Hajek. Bioclimatología de Chile. Ediciones Universidad Católica de Chile, 1–170. Echeverría, C., Coomes, D., Hall, M., A. Newton. 2008. Spatially explicit models to analyze forest loss and frag- mentation between 1976 and 2020 in southern Chile. Biological Conservation, 212, 439–449. https://doi. org/10.1016/j.ecolmodel.2007.10.045 Egli, G. 2006. Voces de aves chilenas (Compact disc). Unión de Ornitólogos de Chile, Santiago de Chile. Fernández, I., Simonetti, J. 2013. Small mammal assemblages in fragmented shrublands of urban areas of Cen- tral Chile. Urban Ecosystems, 16, 377–387. https://doi.org/10.1007/s11252-012-0272-1 417Diet composition of Austral Pygmy Owl in a Peri-urban protected area in South-central Chile Figueroa, R., Corales, S. 2015. Registros ocasionales de presas consumidas por aves rapaces en áreas boscosas del sur de Chile. Boletín Chileno de Ornitología, 21, 150–154. Fontúrbel, F., Silva-Rodríguez, E. A., Cárdenas, N. H., Jiménez, J. E. 2010. Spatial ecology of monito del monte (Dromiciops gliroides) in a fragmented landscape of southern Chile. Mammalian Biology, 75, 1–9. https:// doi.org/10.1016/j.mambio.2009.08.004 Glanz, W. E. 1984. Ecological relationships of two species of Akodon in central Chile. Journal of Mammalogy, 65, 433–441. https://doi.org/10.2307/1381090 González, L., Murúa, R. 1983. Características del periodo reproductivo de tres roedores cricétidos del bosque higrófi lo templado. Anales del Museo de Historia Natural, 16, 87–99. Greene, H., Jaksic, F. M. 1983. Food-niche relationships among sympatric predators: eff ects of level of prey identifi cation. Oikos, 40, 151–154. https://doi.org/10.2307/3544212 Hamilton, K. L., Neil, R. L. 1981. Food habits and bioenergetics of a pair of barn owls and owlets. American Midland Naturalist, 106, 1–9. Hauenstein, E., Ramírez, C., Latsague, M. 1988. Evaluación fl orística y sinecológica del Monumento Natural Cerro Ñielol (IX Región, Chile). Boletín del Museo Regional de la Araucanía, 3, 7–32. Ibarra, J. T., Gálvez, N., Gimona, A., Altamirano, T. A., Rojas, I., Hester, A., Laker, C., Bonacic, C. 2012. Rufous- legged owl (Strix rufi pes) and Austral pygmy owl (Glaucidium nanum) stand use in a gradient of disrupted and old growth Andean temperate forests, Chile. Neotropical Studies on Fauna and Environment, 47, 33–40. http://dx.doi.org/10.1080/01650521.2012.665632 Ibarra, J. T., Altamirano, T.,Vergara, G., Vermehren, A., Vargas, F. H., Martin, M. 2015. Historia natural y autoecología del chuncho (Glaucidium nana) en el bosque templado de la Araucanía, sur de Chile. Boletín Chileno de Ornitología, 21, 29–40. Jaksic, F. 1989. Opportunist, selective, and other oft en-confused terms in the predation literature. Revista Chile- na de Historia Natural, 62, 7–8. Jaksic, F. 1997. Ecología de los vertebrados de Chile. Ediciones Universidad Católica de Chile, 1–262. Jaksic, F., Braker, E. 1983. Food-niche relationships and guild structure of birds of prey: competition vs. op- portunism. Canadian Journal of Zoology, 61, 2230–2241.10.1139/z83-295 Jaksic, F., Medel, R. 1987. El acuchillamiento de datos como método de obtención de intervalos de confi anza y de prueba de hipótesis para índices ecológicos. Medio Ambiente, 8, 95–103. Jaksic, F. M., Feisinger, P., Jiménez, J. E. 1993. A long-term study on the dynamics of guild structure among predatory vertebrates at a semi-arid Neotropical site. Oikos, 67, 87–96. 10.2307/3545099 Jaksic, F. M., Iriarte, A., Jiménez, J. E., Martínez, D. R. 2002. Invaders without frontiers: cross-border invasions of exotic mammals. Biological Invasions, 4, 157–173. 10.1023/A:1020576709964 Jiménez, J. E., Jaksic, F. M. 1989. Biology of the Austral Pygmy Owl. Th e Willson Bulletin. 101, 377–389. 10.2307/4162747 Jiménez, J. E., Jaksic, F. M. 1993. Variación estacional de la dieta del caburé grande (Glaucidium nanum) en Chile y su relación con la abundancia de presas. Hornero, 13, 265–312. King, C. M., Innes, J. G., Flux, M., Kimberley, M. O., Leathwick, J. R., Williams, D. S. 1996. Distribution and abundance of small mammals in relation to habitat in Pureora National Forest Park. New Zealand Journal of Ecology, 20, 215–240. Kruuk, H., De Kock, L. 1980. Food and habitat of badgers (Meles meles L.) on Monte Baldo, northern Italy. Zeitschrift für Saugertierkunde, 46, 295–301. Levins, R. 1968. Evolution in a changing environment. Princeton University Press, 1–120. McPherson, S. C., Sumasgutner, P., Downs, C. T. 2021. South African raptors in urban landscapes: a review. Ostrich, 92, 41–57. https://doi.org/10.2989/00306525.2021.1900942 Muñoz-Pedreros, A., Rau, J. 2004. Estudios de egagrópilas en aves rapaces. In: Muñoz-Pedreros, A., Yáñez, J. eds. Aves rapaces de Chile. CEA Ediciones, Valdivia, Chile, 265–279. Muñoz-Pedreros, A., Gil, C. 2009. Orden Rodentia. In: Muñoz-Pedreros, A., Yáñez, J., eds. Mamíferos de Chile. Centro de Estudios Agrarios y Ambientales, Valdivia, 93–157. Muñoz-Pedreros, A., Rau, J., Yáñez, J. 2019. Aves rapaces de Chile. CEA Ediciones Valdivia, Chile, 1–561. Murúa, R. 1982. Características de las huellas en cinco especies de roedores cricétidos. Boletín de la Sociedad de Biología de Concepción, 53, 76–86. Murúa, R. 1996. Comunidades de mamíferos del bosque templado de Chile. In: Armesto, J., Villagrán, C., Arroyo, M. K., eds. Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, Chile, 113–133. Murúa, R, González, L. A., Meserve, P. 1986. Population ecology of Oryzomys longicaudatus philipii (Rodentia: Cricetidae) in Southern Chile. Journal of Animal Ecology, 55, 281–293. Doi: 10.2307/4708 Norambuena, H., Riquelme, D. 2014. Profesor Dr. Francisco Behn Kuhn (1910–1976) biografía y catálogo de su colección de aves chilenas. [Professor Dr. Francisco Behn Kuhn (1910–1976) biography and catalog of his collection of Chilean birds]. CEA Ediciones, Valdivia, 1–152. Oberdorfer, F. 1960. Pfl anzensoziologische Studien in Chile — Ein Vergleich mit Europa. Flora et Vegetatio Mundi, 2, 1–208. Parera, A. F. 2018. Los mamíferos de Argentina y la región austral de Sudamérica. AP Ediciones Naturales, Argentina, 1–464. 418 A. H. Zúñiga, J. R. Rau, V. Fuenzalida, R. Sandoval Pavez, E. 2004. Descripción de las aves rapaces chilenas. In: Muñoz-Pedreros, A., Yáñez, J., eds. Aves rapaces de Chile. CEA Ediciones, Valdivia, 29–103. Pearson, O. 1995. Annotated keys for identifying small mammals living in or near Nahuel Huapi National Park or Lanin National Park, southern Argentina. Mastozoología Neotropical, 2, 99–148. Peña, L. 1992. Introducción al estudio de los insectos de Chile. Editorial Universitaria, Santiago, Chile, 1–253. Rau, J. 2000. Métodos de análisis de ecología trófi ca. In: Muñoz-Pedreros A., Rau J., Yáñez J., eds. Mamíferos de Chile. [Mammals of Chile] CEA Ediciones, Valdivia, 397–406. Rau, J. R., Martínez, D. R., Yáñez, J. 1985. Dieta de la lechuza blanca, Tyto alba (Strigiformes, Strigidae) en el sur de Chile. Boletín del Museo Regional de la Araucanía, 2, 134–135. Rozzi, R., Martínez, D., Willson, M. F., Sabag, C. 1996. Avifauna de los bosques templados de Sudamérica. In: Armesto, J., Villagrán, C., Arroyo, M. K., eds. Bosques templados de Sudamérica. Editorial Universitaria, Santiago, 132–152. Schoener, T. W. 1968. Sizes of feeding territories among birds. Ecology, 49, 123–141. Solaro, C. 2018. Costs and benefi ts of urban living in raptors. In: Sarasola, J. H., Grande, J. M., Negro, J. J., eds. Birds of prey — Biology and consevation in the XXI century. Springer Verlag, Switzerland, 177–196. Speziale, K. L., Lambertucci, S. A. 2013. Th e eff ect of introduced species on raptors. Journal of Raptor Research, 47, 133–144. 10.3356/JRR-12-00003.1 Zúñiga, A. H., Fuenzalida, V., Sandoval, R. 2018. Hábitos alimentarios de la lechuza blanca Tyto alba en un agroecosistema del centro-sur de Chile. Ecología en Bolivia, 53, 7–15. Zúñiga, A. H., Muñoz-Pedreros, A., Quintana, V. 2021 a. Seasonal variation in a small-mammal assem- blage in a priority site for conservation in South-central Chile. Zoodiversity, 55 (5), 395–404. 10.15407/ zoo2021.05.395 Zúñiga, A. H., Sandoval, R., Fuenzalida, V. 2021 b. Seasonal dynamics of bird assemblages in commercial plantations of Pinus radiata in southern-central Chile. Ornis Hungarica, 29 (2), 46–58. 10.2478/orhu- 2021-0018 Received 22 February 2022 Accepted 28 October 2022 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice