key: cord-347906-3ehsg8oi
authors: Zhang, Zizhen; Zeb, Anwar; Hussain, Sultan; Alzahrani, Ebraheem
title: Dynamics of COVID-19 mathematical model with stochastic perturbation
date: 2020-08-28
journal: Adv Differ Equ
DOI: 10.1186/s13662-020-02909-1
sha: 
doc_id: 347906
cord_uid: 3ehsg8oi

Acknowledging many effects on humans, which are ignored in deterministic models for COVID-19, in this paper, we consider stochastic mathematical model for COVID-19. Firstly, the formulation of a stochastic susceptible–infected–recovered model is presented. Secondly, we devote with full strength our concentrated attention to sufficient conditions for extinction and persistence. Thirdly, we examine the threshold of the proposed stochastic COVID-19 model, when noise is small or large. Finally, we show the numerical simulations graphically using MATLAB.

SIR model for control of this pandemic. But there is no one until now who could control this virus. If we make the contact rates very small it will show the best effect on the further spreading of COVID-19, so for this purpose all governments take action for in terms of the household effect. For the estimation of the final size of the coronavirus epidemic, Batista [3] presented the logistic growth regression model. Many researchers discussed this COVID-19 in different models in integer and in fractional order, see [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] , because of many applications of fractional calculus, stochastic modeling and bifurcation analysis [18] [19] [20] [21] [22] [23] [24] [25] [26] . For the more realistic models, several authors studied the stochastic models by introducing white noise [27] [28] [29] [30] [31] . The effects of the environment in the AIDS model were studied by Dalal et al. [27] using the method of parameter perturbation. Stochastic models will likely produce results different from deterministic models every time the model is run for the same parameters. Stochastic models possess some inherent randomness. The same set of parameter values and initial conditions for deterministic models will lead to an ensemble of different outputs. Tornatore et al. [28] [29] [30] studied the stochastic epidemic models with vaccination. In this work, they proved the existence, uniqueness, and positivity of the solution. A stochastic SIS epidemic model containing vaccination is discussed by Zhu et al. [31] . They obtained the condition of the disease extinction and persistence according to noise and threshold of the deterministic system. Similarly, several authors discussed the same conditions for stochastic models; see [32] [33] [34] [35] [36] [37] [38] [39] .

To study the effects of the environment on spreading of COVID-19 and make the research more realistic, first we formulate a stochastic mathematical COVID-19 model. Then sufficient conditions for extinction and persistence are examined. Furthermore, the threshold of the proposed stochastic COVID-19 model is determined. It plays an important role in mathematical models as a backbone, when there is small or large noise. Finally, we show the numerical simulations graphically with the aid of MATLAB.

The rest of the paper is organized as follows: Sect. 2 is concerned with the COVID-19 model with random perturbation formulation. Section 3 is related to the unique positive solution of proposed model. Furthermore, we investigate the exponential stability of the proposed model in Sect. 4. The persistent conditions are shown in Sect. 5. Finally, we conclude with the results and outcomes of the paper in Sect. 6.

In this section, a COVID-19 mathematical model with random perturbation is formulated as follows:

where the description of parameters and variables are given in Table 1 . In deterministic form the model (1) is given by 

where

Also, we have

So, the solution has a positivity property. For stability analysis of model (2), we have the reproductive number, which is

If R 0 < 1, then system (2) will be locally stable and unstable if R 0 ≥ 1. Similarly for = 0, the system (2) will be globally asymptotically stable.

Here, we first make the following assumptions:

satisfies the usual conditions. Generally, consider a stochastic differential equation of n-dimensions as

with initial value y(t 0 ) = y 0 ∈ R d . By defining the differential operator L with Eq. (6)

If the operator L acts on a function V = (R d ×R + ;R + ), then

, and solution will be left in R 3 + , with probability 1.

Proof Since the coefficient of the differential equations of system (1) are locally Lipschitz continuous for (S(0),

where τ e is the time for noise caused by an explosion (see [6] ). For demonstrating the solution to be global, it is sufficient that τ e = ∞ a.s. Suppose that k 0 ≥ 0 is sufficiently large so that (S(0),

where we set inf φ(empty set) = ∞ throughout the paper. For k → ∞, τ k is clearly increasing. Set τ ∞ = lim k→∞ τ k whither τ ∞ ≤ τ e . If we can show that τ ∞ = ∞ a.s, then τ e = ∞. If false, then there are a pair of constants T > 0 and ∈ (0, 1) such that

So there is an integer k 1 ≥ k 0 , which satisfies

By applying the Itô formula, we obtain

where LV : R 3 + →R + is defined by

By choosing c = γ +μ β , it follows that

Further proof follows from Ji et al. [31] .

In this section, we investigate the condition for extinction of the spread of the coronavirus.

Here, we define

A useful lemma concerned with this work is as follows. Then

In addition Proof Performing the integration of system (1)

Then we have

By applying lim t→0

log

By putting in the value of S(t) from Eq. (17) log

If condition (2) is satisfied, then

and conclusion (16) is proved. Next, according to inequality (19) log

If condition (1) is satisfied, then

and conclusion (15) is proved. We have

According to (15) and (16) lim t→∞ I(t) = 0.

Now, from third equation of system (1), it follows that

By applying the L'Hospital's rule to the previous result, we have

From Eq. (4), it follows that

Hence, we have completed the proof.

This section concerns the persistence of system (1).

Theorem 5.1 Suppose that μ > ρ 2 2 . Let (S(t), I(t), R(t)) be any solution of model (1) with initial conditions (S(0), I(0), R(0)) ∈ R 3 + . If˜ > 1, then

Proof We have

We apply the limit

.

Using Eq. (17) we have

. Furthermore,

By applying the limit t → ∞, we have

.

Hence, the proof is complete.

For the illustration of our obtained results, we use the values of the parameters and the variables given in Table 2 . Now for the numerical simulation, we use Milstein's higher order method [40] . The results obtained through this method are shown graphically in Fig. 1 for both deterministic and stochastic forms.

In this work, a formulation of a stochastic COVID-19 mathematical model is presented. The sufficient conditions are determined for extinction and persistence. Furthermore, we discussed the threshold of proposed stochastic model when there is small or large noise. Finally, we showed numerical simulations graphically with the help of software MATLAB. The conclusions obtained are that the spread of COVID-19 will be under control ifR < 1 and ρ 2 ≤ βμ Λ means that white noise is not large and the value ofR > 1 will lead to the prevailing of COVID-19.

Breaking down of the healthcare system: mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan China

Statistics-based predictions of coronavirus epidemic spreading in mainland China

Estimation of the final size of the coronavirus epidemic by SIR model

Mathematical predictions for coronavirus as a global pandemic

A pneumonia outbreak associated with a new coronavirus of probable bat origin

Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel

Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle

Cross species transmission of the newly identified coronavirus 2019 CoV

Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia

Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan

Study of transmission dynamics of novel COVID-19 by using mathematical model

Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic

On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative

Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative

Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class

Qualitative analysis of a mathematical model in the time of COVID-19

Computational and theoretical modeling of the transmission dynamics of novel COVID-19 under Mittag-Leffler power law

Dynamical behavior for a stochastic two-species competitive model

A new method to investigate almost periodic solutions for an Nicholson's blowflies model with time-varying delays and a linear harvesting term

Bifurcation of a fractional-order delayed malware propagation model in social networks

On p-th moment exponential stability for stochastic cellular neural networks with distributed delays

Bifurcation control of a fractional-order delayed competition and cooperation model of two enterprises

Periodic property and asymptotic behavior for a discrete ratio-dependent food-chain system with delay

Blind in a commutative world: simple illustrations with functions and chaotic attractors

Fractional discretization: the African's tortoise walk

Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system

A stochastic model for internal HIV dynamics

On a stochastic disease model with vaccination

SIVR epidemic model with stochastic perturbation

Stability of a stochastic SIR system

A stochastic SIR epidemic model with density dependent birth rate

The extinction and persistence of the stochastic SIS epidemic model with vaccination

The behavior of an SIR epidemic model with stochastic perturbation

A stochastic differential equation SIS epidemic model

The threshold of a stochastic SIS epidemic model with vaccination

The threshold of a stochastic SIRS epidemic model with saturated incidence

Multigroup SIR epidemic model with stochastic perturbation

Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence

Stochastic Differential Equations and Applications

An algorithmic introduction to numerical simulation of stochastic differential equations

This research was supported by Higher Education Institutions of Anhui Province (No. KJ2020A0002).

Supported by Higher Education Institutions of Anhui Province under (KJ2020A0002).

The authors confirm that the data supporting the findings of this study are available within the article cited therein.

The authors declare that there is no conflict of interest regarding the publication of this paper.

The authors have equally contributed to preparing this manuscript. All authors read and approved the final manuscript. 

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Received: 14 July 2020 Accepted: 17 August 2020