key: cord-266260-t02jngq0 authors: Ramshaw, Rebecca E.; Letourneau, Ian D.; Hong, Amy Y.; Hon, Julia; Morgan, Julia D.; Osborne, Joshua C. P.; Shirude, Shreya; Van Kerkhove, Maria D.; Hay, Simon I.; Pigott, David M. title: A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences date: 2019-12-13 journal: Sci Data DOI: 10.1038/s41597-019-0330-0 sha: doc_id: 266260 cord_uid: t02jngq0 As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) emerged as a global health concern in 2012 when the first human case was documented in Saudi Arabia 1 . Now listed as one of the WHO Research and Development Blueprint priority pathogens, cases have been reported in 27 countries across four continents 2 . Imported cases into non-endemic countries such as France, Great Britain, the United States, and South Korea have caused secondary cases [3] [4] [5] , thus highlighting the potential for MERS-CoV to spread far beyond the countries where index cases originate. Reports in animals suggest that viral circulation could be far more widespread than suggested by human cases alone [6] [7] [8] . To help prevent future incidence of MERS-CoV, public health officials can focus on mitigating zoonotic transfer; however, in order to do this effectively, additional research is needed to determine where spillover could occur between mammals and humans. Previous literature reviews have looked at healthcare-associated outbreaks 9 , importation events resulting in secondary cases 10, 11 , occurrences among dromedary camels 12, 13 , or to summarize current knowledge and knowledge gaps of MERS-CoV 14, 15 . This database seeks fill gaps in literature and build upon existing notification data by enhancing the geographic resolution of MERS-CoV data and providing occurrences of both mammal and environmental detections in addition to human cases. This information can help inform epidemiological models and targeted disease surveillance, both of which play important roles in strengthening global health security. Knowledge of the geographic extent of disease transmission allows stakeholders to develop appropriate emergency response and preparedness activities (https://www.jeealliance.org/ global-health-security-and-ihr-implementation/joint-external-evaluation-jee/), inform policy for livestock trade and quarantine, determine appropriate demand for future vaccines (http://cepi.net/mission) and decide where to deliver them. Additionally, targeted disease surveillance will provide healthcare workers with updated lists of The methods and protocols summarized below have been adapted from previously published literature extraction processes [18] [19] [20] [21] [22] , and provide additional context surrounding our systematic data collection from published reports of MERS-CoV. Data collection. We identified published reports of MERS-CoV by searching PubMed, Web of Science, and Scopus with the following terms: "Middle Eastern Respiratory Syndrome", "Middle East Respiratory Syndrome", "MERSCoV", and "MERS". The initial search was for all articles published about MERS-CoV prior to April 30, 2017 , and was subsequently updated to February 22, 2018. These searches were conducted through the University of Washington Libraries' institutional database subscriptions. We searched the Web of Science Web of Science Core Collection (the subscribed edition includes Science Citation Index Expanded, 1900-present; Social Sciences Citation Index, 1975-present; Arts & Humanities Citation Index, 1975-present; Emerging Sources Citation Index, 2015-present). We searched the standard Scopus database and the standard, freely available PubMed database; these products have a single version that is consistent across institutional subscriptions or access points. In total, this search returned 7,301 related abstracts, which were collated into a database before a title-abstract screening was manually conducted (Fig. 1. Flowchart) . Articles were removed if they did not contain an occurrence of MERS-CoV; for example, vaccine development research or coronavirus proteomic analyses. Non-English articles were flagged for further review and brought into the full text screening stage. The accompanying supplementary file highlight the title and abstract screening process and the inclusion and exclusion criteria. Full text review was conducted on 1,083 sources. To meet the inclusion criteria, articles must have contained both of the following items: 1) a detection of MERS-CoV from humans, animals, or environmental sources, and 2) MERS-CoV occurrences tagged with spatial information. Additionally, extractors attempted to prospectively manually remove articles containing duplicate occurrences that were already extracted in the dataset. Extractors only prospectively manually removed articles if it was clear the articles contained data we were confident had already been extracted and had high-quality data. We excluded 885 sources based on full text review. In addition, we reviewed citations and retroactively added relevant articles to our database if they were not already included. We retroactively added and subsequently marked ten articles for extraction using this process. In total, we extracted 208 peer-reviewed sources reporting detection of MERS-CoV that included geographic and relevant epidemiological metadata. Geo-positioning of data. Google Maps or ArcGIS 23 was used to manually extract location information at the highest resolution available from individual articles. We evaluated spatial information as either points or polygons. The geography was defined as a point if the location of transmission was reported to have occurred within a 5 × 5 km area. Point data are represented by a specific latitude and longitude. A point references an area smaller than 5 × 5 km in order to be compatible with the typical 5 × 5 km resolution of satellite imagery used for global analyses. The geography was defined as a polygon if the location of transmission was less clear, but known to have occurred in a general area (e.g. a province), or the location of transmission occurred within an area greater than 5 × 5 km (e.g. a large city). We used contextual information to determine location in instances where the author's spelling of a location differed from Google Maps or ArcGIS. Maps provided by authors were digitized using ArcGIS. We used three different types of polygons: known administrative boundaries, buffers, and custom polygons. Relevant administrative units were sourced from the Global Administrative Unit Layers curated by the Food and Agricultural Organization of the UN 24 for known administrative boundaries of governorates, districts, or regions, and paired with the occurrence record. Buffers were created to encompass areas in cities and regions without corresponding administrative units. To ensure that buffers encompassed the entirety of the area of interest, Google Maps was used to determine the required radius. In areas with unspecified boundaries (e.g. Table Mountain National Park and the border region between Saudi Arabia and UAE) ArcGIS was used to generate custom polygons, which were assigned a unique code within a defined shapefile for ease of re-identification. This database is publicly available online 16, 17 . Each of the 861 rows represents a unique occurrence of MERS-CoV. Rows containing an index, unspecified, or imported case represent a single case of MERS-CoV. Rows containing mammal and secondary cases may represent more than one case but are still unique geospatial occurrences. Table 1 shows an overview of the content available in the publicly available dataset. In addition, online-only Table 1 lists occurrences by geography, origin, 405 shape type, and publication and online-only Table 2 provides citations of the data. Index 34 99 1 0 93 7 234 Unspecified 86 50 1 4 35 27 203 Mammal 53 56 7 30 43 19 208 Import 11 2 0 2 10 9 34 Secondary 82 30 1 1 26 8 148 Absent 3 8 0 0 7 3 21 Environmental www.nature.com/scientificdata www.nature.com/scientificdata/ 15. pathogen: Name the pathogen identified (e.g. MERS-CoV, Bat Coronaviruses, and other MERS-CoV-like pathogens). 16. pathogen_note: Miscellaneous notes regarding pathogen. 17. patient_type: index, unspecified, NA, secondary, import, or absent. • index: Any human infection of MERS-CoV resulting after direct contact with an animal and no reported contact with a confirmed MERS-CoV case or healthcare setting. • unspecified: Cases that lacked sufficient epidemiological evidence to classify them as any other status (e.g. serosurvey studies). • NA: Non-applicable field; case was not a patient (e.g. mammal) • secondary: Defined as any cases resulting from contact with known human infections. Cases reported after the index case can be assumed to be secondary cases unless accompanied by specific details of likely independent exposure to an animal reservoir. • import: Cases that were brought into a non-endemic country after transmission occurred elsewhere. • absent: Suspected case(s) ultimately confirmed negative for MERS-CoV. 18 . transmission_route: zoonotic, direct, unspecified, or animal-to-animal. • zoonotic: Transmission occurred from an animal to a human. • direct: Only relevant for human-to-human transmission. • unspecified: Lacked sufficient epidemiological evidence to classify a human case as zoonotic or direct. • animal-to-animal: Transmission occurred from an animal to another animal. 19 . clinical: Describes whether the MERS-CoV occurrence demonstrated clinical signs of infection. Denoted by yes, no, or unknown. • yes: Clinical signs of infection were present/reported. Clinical signs among humans may range from mild (e.g. fever, cough) to severe (e.g. pneumonia, kidney failure). Clinical signs among camels include nasal discharge. • no: Clinical signs of infection were not present/reported. • unknown: Subject(s) may or may not have been demonstrating clinical signs of infection. For example, some authors did not explicitly mention symptoms, but individuals reportedly sought medical care. Another example being when a diagnostic serosurvey was conducted during an ongoing outbreak. The term "unknown" was used when articles lacked sufficient evidence for extractors to definitively label as "yes" or "no". 20. diagnostic: Describes the class of diagnostic method that was used. PCR, serology, or reported. 21 . diagnostic_note: More detailed information related to the specific test used (e.g. rk39, IgG, or IgM serology). 22. serosurvey: Describes the context if serological testing was used. • diagnostic: testing of symptomatic patients. • exploratory: historic exposure determined among healthy asymptomatic individuals. 23. country: ISO3 code for country in which the case occurred. 24 . origin: Open-ended field to provide more details on the specific in-country location of MERS-CoV case. 25. problem_geography: This field was utilized if the MERS-CoV case was reported in a location that could cause uncertainty when determining exact geographic occurrence (e.g. hospital, abattoir). 26. lat: Latitude measured in decimal degrees. 27. long: Longitude measured in decimal degrees. 28. latlong_source: The source from which latitude and longitude were derived. 29. loc_confidence: States the level of confidence that researchers had when assigning a geographic location to the MERS-CoV case (good or bad). An answer of 'good' meant the article stated clearly that the case occurred in a specific geographic location and no assumptions were required on part of the researcher. An answer of 'bad' meant the article did not clearly state the specific geographic location of the MERS-CoV case, but the researcher was able to infer the location of occurrence. The field SITE_NOTES was utilized to detail the logic behind researchers' decisions when inference was required. 30. shape_type: The geographic shape type assigned to the MERS-CoV occurrence (point or polygon). 31. poly_type: If the MERS-CoV occurrence was assigned a shape_type of polygon, was it admin (GAUL), custom, or buffer? 32. buffer_radius: If a MERS-CoV occurrence was assigned a buffer, what is the radius in km? 33. gaul_year_or_custom_shapefile: File path used to reach the necessary shape file in ArcGIS. Users of this dataset can find custom shapefiles created for this dataset at: https://cloud.ihme.washington.edu/index. php/s/DGoyKYqnbjG54F2/download 34. poly_id: A standardized and unique identifier assigned to each GAUL shapefile. 35 . poly_field: Which type of polygon was used to geo-position the occurrence? (e.g. if admin1 polygon was used, enter ADM1_CODE) 36. site_notes: Miscellaneous notes regarding the site of occurrence. 37. month_start: Month that the occurrence(s) began. If the article provided a specific month of illness onset, the month was assigned a number from 1-12 (1 = January, 2 = February, etc.). If the article did not provide a specific month of illness onset, then researchers assigned a value of 'NA' . Month that the occurrence(s) ended, defined as the date a patient tested negative for MERS-CoV. If the article provided a specific month for recovery, the month was assigned a number from 1-12 (1 = January, 2 = February, etc.). If the article did not provide a specific month of symptom onset, then researchers assigned a value of 'NA' . 39. year_start: Year that the occurrence(s) began. If the year of illness onset was not provided in the article, the IHME standard was used: (year_start = publication year -3). Year that the occurrence(s) ended. If the article did not provide a specific year for recovery, the IHME standard was used: (year_end = publication year -1). 41. year_accuracy: If years were reported, this field was assigned a value of '0' . If assumptions were required, this field was assigned a value of '1' . All data extracted from the original search (October 2012 to April 30, 2017) was reviewed independently by a second individual to check for accuracy. Challenging extractions from the updated search (May 1, 2017 to February 22, 2018) were selected for group review during bi-weekly team meetings. Upon extraction completion, all data were checked to ensure they fell on land and within the correct country. While the protocol implemented above was designed to reduce the amount of subjective decisions made by extractors, total elimination was not possible. Wherever a subjective decision had to be made, the extractor utilized the various notes fields in order to document the logic behind decisions. These decisions were subsequently reviewed by other extractors. The techniques described here can be applied to collect and curate datasets for other infectious diseases, as has been previously demonstrated with dengue 20 and leishmaniasis 18 . Additionally, since these data were collected independently through published reports of MERS-CoV occurrence, they may be used to build upon existing notification data 26, 27 . Our ability to capture occurrences in this dataset is contingent on the data contained within published literature. Therefore, this dataset does not represent a total count of all cases. Instead, this dataset's value lies within its geo-precision. Data were extracted with a focus on obtaining the highest resolution possible. These data may be merged with other datasets, such as WHO 26 or OIE 27 surveillance records, and are intended to complement, not replace, these resources. Together, published reports and notification data can provide a more comprehensive snapshot of current disease extent and at-risk locations. An important consideration, whether using the literature data alone, or in combination with other databases, is the potential for duplication. Various pieces of metadata can be used to evaluate where potential duplicates could lie, such as common date fields (month_start, month_end, year_start, year_end) or consistent geographic details (lat, long, poly_id, shape_type) or shared epidemiological tags (patient_type). Researchers may wish to consider further steps, such as fuzzy matching of geographic data (e.g. matching a point with an overlapping buffer) or temporal data (e.g. matching a precise month with an overlapping month interval). We acknowledge this duplicate-removal process will not catch all matching records, but it will likely catch several. We recommend Occurrences are layered from top to bottom in the following order: Index (green), Unspecified (orange), Mammal (yellow), Import (blue), Secondary (purple). Points were plotted using their assigned latitudes and longitudes, and shape files were created for polygons. Buffers were also plotted using assigned latitudes and longitudes, after which each buffer's custom radius was drawn. Higher resolution geographies (points, buffers, governorates) were plotted on top of lower resolution geographies (countries, regions). www.nature.com/scientificdata www.nature.com/scientificdata/ this approach because it will allow researchers to remove several duplicates without erroneously deleting any two occurrences that are truly unique (i.e. not duplicates). Essentially, we recommend a sensitive approach above a more specific approach, as the latter simply risks culling too many records that aren't actually duplicates. When merging with other databases, consistency in metadata tagging is essential. For the WHO Disease Outbreak News data feed 26, 27 for instance, nomenclature for case definitions is slightly different, with WHO definitions of "Community Acquired" and "Not Reported" comparable to "Index" and "Unspecified" respectively. In addition, it is important to recognize what information is beyond the scope of these additional databases. Again, when comparing to the WHO dataset, it is important to recognize that serologically positive cases do not meet the case definition used in the WHO database. These adjustments need to be identified on a dataset-to-dataset basis. among cases tagged as Index or unspecified. Occurrences tagged as Index are coloured green, those tagged as unspecified are coloured orange. Points were plotted using their assigned latitudes and longitudes, and shape files were created for polygons. Buffers were also plotted using assigned latitudes and longitudes, after which each buffer's custom radius was drawn. Higher resolution geographies (points, buffers, governorates) were plotted on top of lower resolution geographies (countries, regions). Points were plotted using their assigned latitudes and longitudes, and shape files were created for polygons. Buffers were also plotted using assigned latitudes and longitudes, after which each buffer's custom radius was drawn. Higher resolution geographies (points, buffers, governorates) were plotted on top of lower resolution geographies (countries, regions). www.nature.com/scientificdata www.nature.com/scientificdata/ This database can be combined with other covariates (e.g. satellite imagery) to produce environmental suitability models of MERS-CoV infection risk and potential spillover on both global and regional scales as achieved with other exemplar datasets [28] [29] [30] [31] . This information can be useful in resource allocation aimed at improving disease surveillance and contribute towards a better understanding of the factors facilitating continued emergence of index cases. The addition of sampling techniques and prevalence data may improve this dataset. Researchers were ultimately unable to add these data due to inconsistencies in the way literature reported sampling techniques and prevalence date by geography. An attempt to extract these data using the current approach would have led to sporadic inclusion of this information and would not have been comprehensive for the entire dataset. Moving forward, we recommend authors report sampling technique and prevalence data at the highest resolution geography possible, as seen in Miguel et al. 32 . We encourage continued presentation of paired epidemiological and geographic metadata that would allow for more detailed analysis in the future. This database may also be utilized in clinical settings to provide an evidence-base for diagnoses when used in conjunction with patient travel histories. Additionally, it can be used to identify geographies for surveillance, particularly areas where MERS-CoV has been documented in animals but not humans (e.g. Ethiopia and Nigeria). Identifying locations for surveillance will, in turn, inform global health security. While models will increase the resolution at which these questions can be addressed, datasets such as this provide an initial baseline. A major limitation of this database is the potential for sampling bias, which stems from higher frequency of disease reporting within countries where there exists strong healthcare infrastructure and reporting systems. This database does not attempt to account for such biases, which must be addressed in subsequent modelling activities where such biases are of consequence. Similarly, another limitation is potential duplicate documentation of singular occurrences. This can happen when the same occurrence is assigned different geographies (e.g. point, polygon) in multiple publications. Even though extractors made efforts to prospectively manually identify duplicate occurrences, this was challenging because the process relied upon papers providing sufficient details for extractors to determine a duplicate occurrence (e.g. geography, patient demographics, dates of occurrence, diagnostic methods, etc.). However, the majority of papers did not report such details for each occurrence. In those instances, it was impossible for extractors to discern whether occurrences may have been duplicates from a previous artic le. Even case studies inconsistently reported patient details and demographic information. These are some examples of challenges faced by extractors when we attempted to identify duplicates. Without sufficient contextual clues, extractors lacked evidence to determine duplicity and thus likely extracted some unique occurrences more than once. Despite efforts to remove duplicate occurrences from the database, it is possible that some remain. Geographic uncertainty is similarly problematic for analyses such as this. In some cases, polygons, as opposed to points, are utilised as a geographic frame of reference, reflecting the uncertainty in geotagging in the articles themselves. For some occurrences, there is a strong assumption that the geography listed corresponds to the site of infection. While the use of 5 km × 5 km as the minimum geographical unit allows for some leeway in this precision, it is possible that even with the point data (often corresponding to household clusters) these may not map directly with true infection sites. This must be considered in any subsequent geospatial analysis. Finally, this database represents a time-bounded survey of the literature. While all efforts were made to be comprehensive within this period, articles, and therefore data, will continue to be published. Efforts to streamline ongoing collection processes are still to be fully realized 33 . Regardless, we hope that this dataset provides a solid baseline for further iteration. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia Middle East respiratory syndrome coronavirus (MERS-CoV) Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission Enhanced MERS coronavirus surveillance of travelers from the Middle East to England Control of an Outbreak of Middle East Respiratory Syndrome in a Tertiary Hospital in Korea Molecular Evolution of MERS Coronavirus: Dromedaries as a Recent Intermediate Host or Long-Time Animal Reservoir? Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation Presence of antibodies but no evidence for circulation of MERS-CoV in dromedaries on the Canary Islands Comparative Analysis of Eleven Healthcare-Associated Outbreaks of Middle East Respiratory Syndrome Coronavirus (Mers-Cov) from 2015 to 2017 Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case Risk of MERS importation and onward transmission: a systematic review and analysis of cases reported to WHO A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: Implications for animal vaccination A rapid scoping review of Middle East respiratory syndrome coronavirus in animal hosts What Have We Learned About Middle East Respiratory Syndrome Coronavirus Emergence in Humans? A Systematic Literature Review. Vector Borne Zoonotic Dis Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics Geopositioned Middle East Respiratory Syndrome Coronavirus Occurrences. Database 1983-2017. Institute for Health Metrics and Evaluation (IHME) Database of geopostioned Middle East Respiratory Syndrome Coronavirus occurrences Global database of leishmaniasis occurrence locations The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors A global compendium of human dengue virus occurrence A global compendium of human Crimean-Congo haemorrhagic fever virus occurrence A comprehensive database of the geographic spread of past human Ebola outbreaks Food and Agricultural Organization of the United Nations. The Global Administrative Unit Layers (GAUL): technical aspects Global distribution maps of the leishmaniases Updates to the zoonotic niche map of Ebola virus disease in Africa The global distribution of Crimean-Congo hemorrhagic fever The global distribution and burden of dengue Risk factors for MERS coronavirus infection in dromedary camels in A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models Critical contribution of laboratories to outbreak response support for middle East respiratory syndrome coronavirus International Health Regulations (2005) facilitate communication for in-flight contacts of a Middle East respiratory syndrome case First Confirmed Case of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Bahrain: In a Saudi Gentleman after Cardiac Bypass Surgery. Case Rep Event based surveillance of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Bangladesh among pilgrims and travelers from the Middle East: An update for the period Middle East Respiratory Syndrome Coronavirus Antibodies in Dromedary Camels Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study Definitive diagnosis in suspected Middle East Respiratory Syndrome Coronavirus cases Characteristics of Traveler with Middle East Respiratory Syndrome Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) from the First Imported MERS-CoV Case in China Imported case of MERS-CoV infection identified in China MERS-Related Betacoronavirus in Vespertilio superans Bats Prevalence and genetic diversity analysis of human coronaviruses among cross-border children No MERS-CoV but positive influenza viruses in returning Hajj pilgrims, China Two deletion variants of Middle East respiratory syndrome coronavirus found in a patient with characteristic symptoms Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus Isolated from a Dromedary Camel in Egypt Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt MERS Coronavirus Neutralizing Antibodies in Camels MERS Coronaviruses in Dromedary Camels Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt Middle East respiratory syndrome coronavirus: epidemiology and disease control measures Geographic Distribution of MERS Coronavirus among Dromedary Camels First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response Laboratory investigation and phylogenetic analysis of an imported Middle East respiratory syndrome coronavirus case in Greece Cluster of Middle East Respiratory Syndrome Coronavirus Infections in Iran Epidemiological and Clinical Characteristics of Patients with Middle East Respiratory Syndrome Coronavirus in Iran in 2014 Health Care Associated Middle East Respiratory Syndrome (MERS): A Case from Iran Influenza virus but not MERS coronavirus circulation in Iran Phylogenetic Analysis of MERSCoV in Human and Camels in Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel Detection of Coronaviruses in Bats of Various Species in Italy Investigation of an imported case of Middle East Respiratory Syndrome Coronavirus (MERS-CoV Don't forget the migrants": exploring preparedness and response strategies to combat the potential spread of MERS-CoV virus through migrant workers in Sri Lanka High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan. Vector Borne Zoonotic Dis Arabia: an index case investigation Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan Stillbirth During Infection With Middle East Respiratory Syndrome Coronavirus Antibodies against MERS Coronavirus in Dromedary Camels MERS-CoV Antibodies in Humans, Africa No Serologic Evidence of Middle East Respiratory Syndrome Coronavirus Infection Among Camel Farmers Exposed to Highly Seropositive Camel Herds: A Household Linked Study Serological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update Emergence of MERS-CoV in the Middle East: origins, transmission, treatment, and perspectives Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: preparedness and response Dromedary camels in northern Mali have high seropositivity to MERS-CoV Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria Lack of serological evidence of Middle East respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels The Middle East Respiratory Syndrome Coronavirus (MERS-COV) Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE Imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection from Oman to Thailand Serologic Evidence for MERS-CoV Infection in Dromedary Camels Contact tracing the first Middle East respiratory syndrome case in the Philippines Effectiveness of the Middle East respiratory syndrome-coronavirus protocol in enhancing the function of an Emergency Department in Qatar High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases Isolation of MERS coronavirus from a dromedary camel MERS-CoV Infection of Alpaca in a Region Where MERS-CoV is Endemic Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels Occupational Exposure to Dromedaries and Risk for MERS-CoV Infection Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Infection in Camel Workers in Qatar During 2013-2014: A Case-Control Study MERS-CoV outbreak in Jeddah-a link to health care facilities A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker A Comparative Study of Clinical Presentation and Risk Factors for Adverse Outcome in Patients Hospitalised with Acute Respiratory Disease Due to MERS Coronavirus or Other Causes A family cluster of Middle East Respiratory Syndrome Coronavirus infections related to a likely unrecognized asymptomatic or mild case Acute Management and Long-Term Survival Among Subjects With Severe Middle East Respiratory Syndrome Coronavirus Pneumonia and ARDS Acute Middle East Respiratory Syndrome Coronavirus: Temporal Lung Changes Observed on the Chest Radiographs of 55 Patients Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus An outbreak of Middle East Respiratory Syndrome (MERS) due to coronavirus in Al-Ahssa Region, Saudi Arabia Antibody Response and Disease Severity in Healthcare Worker MERS Survivors Brief Report: Family Cluster of Middle East Respiratory Syndrome Coronavirus Infections Characteristics and Outcomes of Middle East Respiratory Syndrome Coronavirus Patients Admitted to an Intensive Care Unit in Jeddah, Saudi Arabia Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a singlecenter experience in Saudi Arabia Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study Description of a Hospital Outbreak of Middle East Respiratory Syndrome in a Large Tertiary Care Hospital in Saudi Arabia Descriptive epidemiology and characteristics of confirmed cases of Middle East respiratory syndrome coronavirus infection in the Makkah Region of Saudi Arabia Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study Evidence for camel-to-human transmission of MERS coronavirus Exposures among MERS Case-Patients First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities Hospital outbreak of Middle East respiratory syndrome coronavirus Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia Identified Transmission Dynamics of Middle East Respiratory Syndrome Coronavirus Infection During an Outbreak: Implications of an Overcrowded Emergency Department Impact of Middle East Respiratory Syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome Lack of middle East respiratory syndrome coronavirus transmission from infected camels Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia Multifacility Outbreak of Middle East Respiratory Syndrome in Taif, Saudi Arabia Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia MERS coronavirus in dromedary camel herd, Saudi Arabia MERS CoV infection in two renal transplant recipients: case report MERS-CoV in Upper Respiratory Tract and Lungs of Dromedary Camels Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia Middle East respiratory syndrome coronavirus (MERS-CoV): A cluster analysis with implications for global management of suspected cases Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: Demographic, clinical and survival data Middle East respiratory syndrome coronavirus in children Middle East Respiratory Syndrome Coronavirus Infection During Pregnancy: A Report of 5 Cases From Saudi Arabia Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia Middle East Respiratory Syndrome Coronavirus Transmission in Extended Family Middle Eastern Respiratory Syndrome Corona Virus (MERS CoV): case reports from a tertiary care hospital in Saudi Arabia Molecular Epidemiology of Hospital Outbreak of Middle East Respiratory Syndrome Notes from the Field: Nosocomial Outbreak of Middle East Respiratory Syndrome in a Large Tertiary Care Hospital-Riyadh, Saudi Arabia Outbreak of Middle East Respiratory Syndrome at Tertiary Care Hospital Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, crosssectional, serological study Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients Report of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in Four Patients with Hematological Malignancies Treated at King Fahad Medical City Risk Factors for Middle East Respiratory Syndrome Coronavirus Infection among Healthcare Personnel Spontaneous intracranial hemorrhage in a patient with Middle East respiratory syndrome corona virus Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report Surveillance and Testing for Middle East Respiratory Syndrome Coronavirus, Saudi Arabia The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study The first case of the 2015 Korean Middle East Respiratory Syndrome outbreak Travel-related MERS-CoV cases: an assessment of exposures and risk factors in a group of Dutch travellers returning from the Kingdom of Saudi Arabia Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia Middle East respiratory syndrome coronavirus transmission among health care workers: Implication for infection control Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection -clinicopathological and ultrastructural study The calm before the storm: clinical observations of Middle East respiratory syndrome (MERS) patients The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons Assessing the Detection of Middle East Respiratory Syndrome Coronavirus IgG in Suspected and Proven Cases of Middle East Respiratory Syndrome Coronavirus Infection Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia Conveyance Contact Investigation for Imported Middle East Respiratory Syndrome Cases Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses Outbreak of Middle East Respiratory Syndrome-Coronavirus Causes High Fatality After Cardiac Operations Prevalence of antibodies against the Middle East Respiratory Syndrome coronavirus, influenza A and B viruses among blood donors, Saudi Arabia Serological evidence of coronavirus infections in native hamadryas baboons (Papio hamadryas hamadryas) of the Kingdom of Saudi Arabia Hematologic, hepatic, and renal function changes in hospitalized patients with Middle East respiratory syndrome coronavirus Middle East Respiratory Syndrome Coronavirus and Pulmonary Tuberculosis Coinfection: Implications for Infection Control Outcome of strict implementation of infection prevention control measures during an outbreak of Middle East respiratory syndrome Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: a retrospective study Sero-prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) specific antibodies in dromedary camels in Tabuk, Saudi Arabia Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans Middle East respiratory syndrome coronavirus disease in children Close relative of human Middle East respiratory syndrome coronavirus in bat Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat MERS outbreak in Korea: hospital-to-hospital transmission A Case Report of a Middle East Respiratory Syndrome Survivor with Kidney Biopsy Results An Unexpected Outbreak of Middle East Respiratory Syndrome Coronavirus Infection in the Republic of Korea Atypical presentations of MERS-CoV infection in immunocompromised hosts Clinical Implications of 5 Cases of Middle East Respiratory Syndrome Coronavirus Infection in a South Korean Outbreak Emergency cesarean section in an epidemic of the middle east respiratory syndrome: a case report Epidemiologic features of the first MERS outbreak in Korea: focus on Pyeongtaek St. Mary's Hospital Epidemiological investigation of the 119th confirmed Middle East Respiratory Syndrome coronavirus case with an indefinite mode of transmission during the Pyeongtaek outbreak in Korea Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards Detection of Severe Acute Respiratory Syndrome-Like, Middle East Respiratory Syndrome-Like Bat Coronaviruses and Group H Rotavirus in Faeces of Korean Bats High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea Infectivity of an Asymptomatic Patient With Middle East Respiratory Syndrome Coronavirus MERS epidemiological investigation to detect potential mode of transmission in the 178th MERS confirmed case in Pyeongtaek MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study Middle East Respiratory Syndrome in 3 Persons, South Korea Middle East Respiratory Syndrome-Coronavirus Infection: A Case Report of Serial Computed Tomographic Findings in a Young Male Patient Outbreaks of Middle East Respiratory Syndrome in Two Hospitals Initiated by a Single Patient in Daejeon Successful treatment of suspected organizing pneumonia in a patient with Middle East respiratory syndrome coronavirus infection: a case report Surveillance operation for the 141st confirmed case of Middle East Respiratory Syndrome coronavirus in response to the patient's prior travel to Jeju Island Transmission among healthcare worker contacts with a Middle East respiratory syndrome patient in a single Korean centre Host susceptibility to MERS-CoV infection, a retrospective cohort study of the 2015 Korean MERS outbreak A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea A Middle East respiratory syndrome screening clinic for health care personnel during the 2015 Middle East respiratory syndrome outbreak in South Korea: A single-center experience Evaluation and Clinical Validation of Two Field-Deployable Reverse Transcription-Insulated Isothermal PCR Assays for the Detection of the Middle East Respiratory Syndrome-Coronavirus Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea MERS-CoV Antibody Responses 1 Year after Symptom Onset Neurological Complications during Treatment of Middle East Respiratory Syndrome Impact of Middle East respiratory syndrome outbreak on the use of emergency medical resources in febrile patients Hospital Outbreaks of Middle East Respiratory Syndrome Zero Transmission of Middle East Respiratory Syndrome: Lessons Learned From Thailand Family cluster of Middle East respiratory syndrome coronavirus infections Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age Acute Middle East Respiratory Syndrome Coronavirus Infection in Livestock Dromedaries Antibodies against MERS Coronavirus in Dromedary Camels Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai Middle East Respiratory Syndrome Coronavirus during Pregnancy Polyphyletic origin of MERS coronaviruses and isolation of a novel clade A strain from dromedary camels in the United Arab Emirates Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate Time Course of MERS-CoV Infection and Immunity in Dromedary Camels Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings Response to Emergence of Middle East Respiratory Syndrome Coronavirus Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates MERS-CoV in pregnancy Some epidemiological studies on MERS coronavirus in dromedaries in the United Arab Emirates -A short communication Emerging and Reemerging Diseases in the World Health Organization (WHO) Eastern Mediterranean Region-Progress, Challenges, and WHO Initiatives Melinda Gates Foundation OPP#1181128 and S.I.H. was supported by OPP1132415 curated and catalogued the database. S.S. provided managerial support. All authors participated in interpreting and summarizing the results. R.E.R. wrote the first draft of the manuscript. All other authors critically reviewed the manuscript had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis S.I.H. and D.M.P. are members of the editorial board of Scientific Data. Supplementary information is available for this paper at https://doi.org/10.1038/s41597-019-0330-0.Correspondence and requests for materials should be addressed to D.M.P.Reprints and permissions information is available at www.nature.com/reprints. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.